|
|
Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment |
LIU Yang1, WU Jinyi1, YAN Xiaoyu1, CHAI Ke2( ) |
1.School of Materials Science and Engineering, Hainan University, Haikou 570228, China 2.Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China |
|
|
Abstract The effect of Bacillus flexus on degradation and corrosion behavior of polyurethane varnish coating in marine environment was investigated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the Bacillus flexus did not exhibit significant effect on the degradation of the polyurethane varnish coating after immersion in Bacillus flexus containing seawater for 1 h. With the extension of immersion time, the corrosion resistance of the coating was significantly lower in Bacillus flexus containing seawater than that in sterile seawater, indicating that Bacillus flexus could cause the degradation of the coating. The coating resistance was about 108 Ω·cm2 at the initial stage of immersion both in sterile seawater and Bacillus flexus containing seawater. However, the corrosion resistance of the coating dropped to 5.22×106 and 5.46×106 Ω·cm2 after immersion in sterile seawater for 13 and 35 d respectively. As comparison, the corrosion resistance of the coating decreased to 2.16×106 and 7.96×105 Ω·cm2 after immersion in Bacillus flexus containing seawater for 13 and 35 d, respectively. The facts showed that the corrosion resistance of the coating in Bacillus flexus containing seawater decreased larger than that in sterile seawater. SEM observation result showed that after immersion for 35 d in Bacillus flexus inoculated seawater, numerous pores and pulverization signs could be observed of the coating surface. From the result of FTIR, the absorption peaks of N—H bond and C—O bond of coatings after immersion in Bacillus flexus containing seawater were significantly lower than that in sterile seawater, indicating that Bacillus flexus can clearly degrade the polyurethane varnish coating.
|
Received: 19 May 2020
|
|
Fund: National Natural Science Foundation of China(51761011) |
Corresponding Authors:
CHAI Ke
E-mail: chaike888@sina.com
|
1 |
Gu J D. Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances [J]. Int. Biodeterior. Biodegrad., 2003, 52: 69
|
2 |
An W X. The study of marine corrosion and detection of vessel steel [D]. Qingdao: Ocean University of China, 2009
|
|
安闻讯. 船用钢海水腐蚀与检测研究 [D]. 青岛: 中国海洋大学, 2009
|
3 |
Duan J Z, Hou B Y. Research progress of biocorrosion, biofouling and their control techniques for marine steel and reinforced concrete infrastructure [J]. J. Highway Trans. Res. Dev., 2010, 27(9): 118
|
|
段继周, 侯保荣. 海洋工程设施生物腐蚀、污损和防护技术研究进展 [J]. 公路交通科技, 2010, 27(9): 118
|
4 |
Xiang L B, Zhang J C, Liu X R, et al. Microbiological influenced corrosion and microbiological influenced corrosion inhibition—Overview and a case application in oilfield produced water [J]. Corros. Sci. Prot. Technol., 2019, 31: 85
|
|
向龙斌, 张吉昌, 刘心蕊等. 微生物腐蚀与采出水的微生物防腐蚀—回顾与应用实例 [J]. 腐蚀科学与防护技术, 2019, 31: 85
|
5 |
Hou B R, Lu D Z. Corrosion cost and preventive strategies in China [J]. Bull. Chin. Acade. Sci., 2018, 33: 601
|
|
侯保荣, 路东柱. 我国腐蚀成本及其防控策略 [J]. 中国科学院院刊, 2018, 33: 601
|
6 |
Xu P, Ren H Y, Wang C Z, et al. Research progress on mixture microbial corrosion and analytical method on metal surface [J]. Surf. Technol., 2019, 48: 216
|
|
许萍, 任恒阳, 汪长征等. 金属表面混合微生物腐蚀及分析方法研究进展 [J]. 表面技术, 2019, 48: 216
|
7 |
Yang W J, Neoh K G, Kang E T, et al. Polymer brush coatings for combating marine biofouling [J]. Prog. Polym. Sci., 2014, 39: 1017
|
8 |
Kandasamy K. Polythene and plastics-degrading microbes from the mangrove soil [J]. Rev. Biol. Trop., 2003, 51: 3
|
9 |
Banerjee A, Ghoshal A K. Phenol degradation by Bacillus cereus: Pathway and kinetic modeling [J]. Bioresour. Technol., 2010, 101: 5501
|
10 |
Walczak M, Brzezinska M S, Sionkowska A, et al. Biofilm formation on the surface of polylactide during its biodegradation in different environments [J]. Colloid. Surf., 2015, 136B: 340
|
11 |
Zhang R Z, Tian W J, Wang C Y, et al. Strong hydrophobic anticorrosive surface properties of polyurethane composites with two-component modified isocyanate [J]. Total Corros. Control, 2020, 34(2): 9
|
|
张瑞珠, 田伟杰, 王重洋等. 双组份改性聚氨酯材料强疏水防腐表面性能研究 [J]. 全面腐蚀控制, 2020, 34(2): 9
|
12 |
Wu J Y, Luo Q, Xiao W L, et al. Influence of vibrio on corrosion behaviors and mechanical properties of 45 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 343
|
|
吴进怡, 罗琦, 肖伟龙等. 海水环境中弧菌对45钢腐蚀行为及力学性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 343
|
13 |
Xiao W L, Chai K, Yang Y H, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 359
|
|
肖伟龙, 柴柯, 杨雨辉等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 359
|
14 |
Wang Y, Tang Y, Xie C S, et al. The applications of the electrochemical impedance spectroscopy in the materials researches [J]. Mater. Rep., 2011, 25(13): 5
|
|
王芸, 汤滢, 谢长生等. 电化学阻抗谱在材料研究中的应用 [J]. 材料导报, 2011, 25(13): 5
|
15 |
Encinas-Sánchez V, De Miguel M T, Lasanta M I, et al. Electrochemical impedance spectroscopy (EIS): An efficient technique for monitoring corrosion processes in molten salt environments in CSP applications [J]. Solar Energy Mater. Solar Cells, 2019, 191: 157
|
16 |
Zhao X. Characteristics of electrochemical impedance spectroscopy in deterioration process of organic coating [D]. Qingdao: Ocean University of China, 2007
|
|
赵霞. 有机涂层失效过程的电化学阻抗谱响应特征研究 [D]. 青岛: 中国海洋大学, 2007
|
17 |
Dhoke S K, Khanna A S. Electrochemical impedance spectroscopy (EIS) study of nano-alumina modified alkyd based waterborne coatings [J]. Prog. Org. Coat., 2012, 74: 92
|
18 |
Zhang H F, Gao Y M, Cao X, et al. Effect of modified nano-ZnO on corrosion resistance of acrylic polyurethane coating [J]. Electroplat. Finish., 2010, 29(2): 54
|
|
张海凤, 高延敏, 曹霞等. 改性纳米氧化锌对丙烯酸聚氨酯涂层防腐性能的影响 [J]. 电镀与涂饰, 2010, 29(2): 54
|
19 |
Wang J C, Yang S L, Li G, et al. Synthesis of a new-type carbonific and its application in intumescent flame-retardant (IFR)/polyurethane coatings [J]. J. Fire Sci., 2003, 21: 245
|
20 |
Liu J L, Zong E M, Fu H Y, et al. Adsorption of aromatic compounds on porous covalent triazine-based framework [J]. J. Colloid Interface Sci., 2012, 372: 99
|
21 |
Liu Q, Jin S B, Wang Z Y, et al. Study on protective properties of graphene modified coatings [J]. Paint Coat. Ind., 2020, 50(4): 14
|
|
刘茜, 金少波, 王震宇等. 石墨烯改性涂层防护性能研究 [J]. 涂料工业, 2020, 50(4): 14
|
22 |
Zhang W X, Wu J Y, Yan X Y, et al. Influence of pseudomonas sp. on degradation of polyurethane varnish coating in marine environment [J]. Surf. Technol., 2019, 48(7): 302
|
|
张伟雄, 吴进怡, 闫小宇等. 海洋环境中假单胞菌对聚氨酯清漆涂层分解的影响 [J]. 表面技术, 2019, 48(7): 302
|
23 |
Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
|
|
达波, 余红发, 麻海燕等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260
|
24 |
Huttunen-Saarivirta E, Yudin V E, Myagkova L A, et al. Corrosion protection of galvanized steel by polyimide coatings: EIS and SEM investigations [J]. Prog. Org. Coat., 2011, 72: 269
|
25 |
Zhang Y X, Chen S G, Li H, et al. Preparation of silicon nitride doped epoxy-based composite coatings and their corrosion resistance [J]. Surf. Technol., 2018, 47(1): 100
|
|
张永兴, 陈守刚, 李航等. 氮化硅掺杂环氧树脂复合涂层的制备及耐腐蚀性能研究 [J]. 表面技术, 2018, 47(1): 100
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|