Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (1): 36-42    DOI: 10.11902/1005.4537.2020.087
Current Issue | Archive | Adv Search |
Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment
LIU Yang1, WU Jinyi1, YAN Xiaoyu1, CHAI Ke2()
1.School of Materials Science and Engineering, Hainan University, Haikou 570228, China
2.Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
Download:  HTML  PDF(3347KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Bacillus flexus on degradation and corrosion behavior of polyurethane varnish coating in marine environment was investigated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the Bacillus flexus did not exhibit significant effect on the degradation of the polyurethane varnish coating after immersion in Bacillus flexus containing seawater for 1 h. With the extension of immersion time, the corrosion resistance of the coating was significantly lower in Bacillus flexus containing seawater than that in sterile seawater, indicating that Bacillus flexus could cause the degradation of the coating. The coating resistance was about 108 Ω·cm2 at the initial stage of immersion both in sterile seawater and Bacillus flexus containing seawater. However, the corrosion resistance of the coating dropped to 5.22×106 and 5.46×106 Ω·cm2 after immersion in sterile seawater for 13 and 35 d respectively. As comparison, the corrosion resistance of the coating decreased to 2.16×106 and 7.96×105 Ω·cm2 after immersion in Bacillus flexus containing seawater for 13 and 35 d, respectively. The facts showed that the corrosion resistance of the coating in Bacillus flexus containing seawater decreased larger than that in sterile seawater. SEM observation result showed that after immersion for 35 d in Bacillus flexus inoculated seawater, numerous pores and pulverization signs could be observed of the coating surface. From the result of FTIR, the absorption peaks of N—H bond and C—O bond of coatings after immersion in Bacillus flexus containing seawater were significantly lower than that in sterile seawater, indicating that Bacillus flexus can clearly degrade the polyurethane varnish coating.

Key words:  Bacillus flexus      polyurethane varnish coating      marine environment      degradation     
Received:  19 May 2020     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51761011)
Corresponding Authors:  CHAI Ke     E-mail:  chaike888@sina.com

Cite this article: 

LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 36-42.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.087     OR     https://www.jcscp.org/EN/Y2021/V41/I1/36

Fig.1  Nyquist plots of polyurethane varnish coating immersed in sterile seawater (a) and Bacillus flexus inoculated seawater (b)
Fig.2  Equivalent electrical circuits models of 1~48 h (a), 5~35 d (b) immersion time in sterile seawater, and 1~48 h (c), 5~29 d (d), 35 d (e) immersion time in sterile seawater containing Bacillus flexus
Fig.3  Variation in the Rcoat values with immersion time in sterile seawater and seawater containing Bacillus flexus
Fig.4  SEM images of surfaces of the coatings before immersion (a) and after 35 d immersion in sterile seawater (b) and seawater inoculated with Bacillus flexus (c)
Fig.5  FTIR spectra of the coating without immersion (a) and after 35 d immersion in sterile seawater (b) and seawater inoculated with Bacillus flexus (c)
1 Gu J D. Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances [J]. Int. Biodeterior. Biodegrad., 2003, 52: 69
2 An W X. The study of marine corrosion and detection of vessel steel [D]. Qingdao: Ocean University of China, 2009
安闻讯. 船用钢海水腐蚀与检测研究 [D]. 青岛: 中国海洋大学, 2009
3 Duan J Z, Hou B Y. Research progress of biocorrosion, biofouling and their control techniques for marine steel and reinforced concrete infrastructure [J]. J. Highway Trans. Res. Dev., 2010, 27(9): 118
段继周, 侯保荣. 海洋工程设施生物腐蚀、污损和防护技术研究进展 [J]. 公路交通科技, 2010, 27(9): 118
4 Xiang L B, Zhang J C, Liu X R, et al. Microbiological influenced corrosion and microbiological influenced corrosion inhibition—Overview and a case application in oilfield produced water [J]. Corros. Sci. Prot. Technol., 2019, 31: 85
向龙斌, 张吉昌, 刘心蕊等. 微生物腐蚀与采出水的微生物防腐蚀—回顾与应用实例 [J]. 腐蚀科学与防护技术, 2019, 31: 85
5 Hou B R, Lu D Z. Corrosion cost and preventive strategies in China [J]. Bull. Chin. Acade. Sci., 2018, 33: 601
侯保荣, 路东柱. 我国腐蚀成本及其防控策略 [J]. 中国科学院院刊, 2018, 33: 601
6 Xu P, Ren H Y, Wang C Z, et al. Research progress on mixture microbial corrosion and analytical method on metal surface [J]. Surf. Technol., 2019, 48: 216
许萍, 任恒阳, 汪长征等. 金属表面混合微生物腐蚀及分析方法研究进展 [J]. 表面技术, 2019, 48: 216
7 Yang W J, Neoh K G, Kang E T, et al. Polymer brush coatings for combating marine biofouling [J]. Prog. Polym. Sci., 2014, 39: 1017
8 Kandasamy K. Polythene and plastics-degrading microbes from the mangrove soil [J]. Rev. Biol. Trop., 2003, 51: 3
9 Banerjee A, Ghoshal A K. Phenol degradation by Bacillus cereus: Pathway and kinetic modeling [J]. Bioresour. Technol., 2010, 101: 5501
10 Walczak M, Brzezinska M S, Sionkowska A, et al. Biofilm formation on the surface of polylactide during its biodegradation in different environments [J]. Colloid. Surf., 2015, 136B: 340
11 Zhang R Z, Tian W J, Wang C Y, et al. Strong hydrophobic anticorrosive surface properties of polyurethane composites with two-component modified isocyanate [J]. Total Corros. Control, 2020, 34(2): 9
张瑞珠, 田伟杰, 王重洋等. 双组份改性聚氨酯材料强疏水防腐表面性能研究 [J]. 全面腐蚀控制, 2020, 34(2): 9
12 Wu J Y, Luo Q, Xiao W L, et al. Influence of vibrio on corrosion behaviors and mechanical properties of 45 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 343
吴进怡, 罗琦, 肖伟龙等. 海水环境中弧菌对45钢腐蚀行为及力学性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 343
13 Xiao W L, Chai K, Yang Y H, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 359
肖伟龙, 柴柯, 杨雨辉等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 359
14 Wang Y, Tang Y, Xie C S, et al. The applications of the electrochemical impedance spectroscopy in the materials researches [J]. Mater. Rep., 2011, 25(13): 5
王芸, 汤滢, 谢长生等. 电化学阻抗谱在材料研究中的应用 [J]. 材料导报, 2011, 25(13): 5
15 Encinas-Sánchez V, De Miguel M T, Lasanta M I, et al. Electrochemical impedance spectroscopy (EIS): An efficient technique for monitoring corrosion processes in molten salt environments in CSP applications [J]. Solar Energy Mater. Solar Cells, 2019, 191: 157
16 Zhao X. Characteristics of electrochemical impedance spectroscopy in deterioration process of organic coating [D]. Qingdao: Ocean University of China, 2007
赵霞. 有机涂层失效过程的电化学阻抗谱响应特征研究 [D]. 青岛: 中国海洋大学, 2007
17 Dhoke S K, Khanna A S. Electrochemical impedance spectroscopy (EIS) study of nano-alumina modified alkyd based waterborne coatings [J]. Prog. Org. Coat., 2012, 74: 92
18 Zhang H F, Gao Y M, Cao X, et al. Effect of modified nano-ZnO on corrosion resistance of acrylic polyurethane coating [J]. Electroplat. Finish., 2010, 29(2): 54
张海凤, 高延敏, 曹霞等. 改性纳米氧化锌对丙烯酸聚氨酯涂层防腐性能的影响 [J]. 电镀与涂饰, 2010, 29(2): 54
19 Wang J C, Yang S L, Li G, et al. Synthesis of a new-type carbonific and its application in intumescent flame-retardant (IFR)/polyurethane coatings [J]. J. Fire Sci., 2003, 21: 245
20 Liu J L, Zong E M, Fu H Y, et al. Adsorption of aromatic compounds on porous covalent triazine-based framework [J]. J. Colloid Interface Sci., 2012, 372: 99
21 Liu Q, Jin S B, Wang Z Y, et al. Study on protective properties of graphene modified coatings [J]. Paint Coat. Ind., 2020, 50(4): 14
刘茜, 金少波, 王震宇等. 石墨烯改性涂层防护性能研究 [J]. 涂料工业, 2020, 50(4): 14
22 Zhang W X, Wu J Y, Yan X Y, et al. Influence of pseudomonas sp. on degradation of polyurethane varnish coating in marine environment [J]. Surf. Technol., 2019, 48(7): 302
张伟雄, 吴进怡, 闫小宇等. 海洋环境中假单胞菌对聚氨酯清漆涂层分解的影响 [J]. 表面技术, 2019, 48(7): 302
23 Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
达波, 余红发, 麻海燕等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260
24 Huttunen-Saarivirta E, Yudin V E, Myagkova L A, et al. Corrosion protection of galvanized steel by polyimide coatings: EIS and SEM investigations [J]. Prog. Org. Coat., 2011, 72: 269
25 Zhang Y X, Chen S G, Li H, et al. Preparation of silicon nitride doped epoxy-based composite coatings and their corrosion resistance [J]. Surf. Technol., 2018, 47(1): 100
张永兴, 陈守刚, 李航等. 氮化硅掺杂环氧树脂复合涂层的制备及耐腐蚀性能研究 [J]. 表面技术, 2018, 47(1): 100
[1] LU Lili, LIU Lijun, YAO Shenglian, LI Huafang, WANG Luning. Degradation Behavior of Pure Zinc and Zn-xLi Alloy in Artificial Urine[J]. 中国腐蚀与防护学报, 2021, 41(6): 765-774.
[2] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[3] Yukun WANG, Jing LIU, Qian HU, Feng HUANG. Effect of S2- on Corrosion Behavior of A710 Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[4] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[5] Hongtao ZHAO, Weizhong LU, Jing LI, Yugui ZHENG. Degradation Behavior of Solvent-free Epoxy Coatings in Simulated Flowing Sea Water with Sand by Different Flow Rates[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[6] Hongyang GAO,Wei WANG,Likun XU,Li MA,Zhangji YE,Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[7] YANG Hai, LU Weizhong, LI Jing, SUN Chao. Degradation Behavior of Fusion Bonded Epoxy Powder Coating on Q235 Carbon Steel in 1.5 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2014, 34(4): 382-388.
[8] CAI Jianping, LIU Ming, AN Yinghui. DEGRADATION KINETICS OF PROTECTIVE COATING FOR ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(3): 256-261.
[9] WANG Li,LIU Chunyang,HAN Zhenyu, TONG Wenwei. HOT CORROSION BEHAVIOR AND EVALUATION OF TURBINE COMPONENTS AND MATERIALS USED FOR GAS TURBINE ENGINE[J]. 中国腐蚀与防护学报, 2011, 31(5): 399-403.
[10] YONG Xingyue, JI Jing, ZHANG Yaqin, LI Dongliang, ZHANG Zhanjia. QUANTITATIVE DETERMINATION OF MECHANICAL PROPERTIES FOR CAVITATION CORROSION SURFACE LAYER OF METAL BY MICRO/NANO MECHANICS MEASUREMENT TECHNOLOGY[J]. 中国腐蚀与防护学报, 2011, 31(1): 40-45.
[11] LIU Wei, WANG Jia. ENVIRONMENTAL IMPACT OF MATERIAL CORROSION RESEARCH PROGRESS IN MARINE SPLASH ZONE[J]. 中国腐蚀与防护学报, 2010, 30(6): 504-512.
[12] LIU Haoyu, LIANG Xiaofeng, SHAO Yawei, MENG Guozhe,ZHANG Tao, WANG Fuhui. EFFECT OF HYDROSTATIC PRESSURE OF 3.5%NaCl SOLUTION ON THE CORROSION BEHAVIOR OF EPOXY COATING[J]. 中国腐蚀与防护学报, 2010, 30(5): 374-378.
[13] WANG Chunli, WU Jianhua, LI Qingfen. RECENT ADVANCES AND PROSPECT OF GALVANIC CORROSION IN MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.
[14] PAN Taijun; LIN Yifan; HU Jing. ACCELERATED CORROSION BEHAVIOR OF Fe-Al ALLOYS UNDER KCl-ZnCl2 DEPOSITS[J]. 中国腐蚀与防护学报, 2010, 30(1): 58-61.
[15] HU Jianwen GAO Jin LI Xiaogang DU Cuinv. AN INVESTIGATION OF UV PHOTO-DEGRADATION ON ACRYLIC POLYURETHANE VARNISH COATINGS[J]. 中国腐蚀与防护学报, 2009, 29(5): 371-375.
[1] . STUDY ON ATMOSPHERIC CORROSION OF LOW ALLOY STEEL[J]. J Chin Soc Corr Pro, 2004, 24(3): 147 -154 .
[2] . A VIRTUAL INSTRUMENT FOR CORROSION RATE MEASUREMENT BY ELECTROCHEMICAL FREQUENCY MODULATION TECHNIQUE[J]. J Chin Soc Corr Pro, 2008, 28(2): 65 -69 .