Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (6): 543-549    DOI: 10.11902/1005.4537.2019.233
Current Issue | Archive | Adv Search |
Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater
DING Guoqing1,2(),LI Xiangyang1,3,ZHANG Bo1,2,YANG Zhaohui2,HUANG Guiqiao2,YANG Haiyang2,LIU Kaiji2
1. Beijing Advanced Innovation Center of Materials Genome Engineering, Beijing 100081, China
2. Qingdao NCS Testing and Corrosion Protection Technology Co. , Ltd. , Qingdao 266071, China
3. Central Research Institute of Iron and Steel, Beijing 100081, China
Download:  HTML  PDF(4790KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The variation of free corrosion potential of several metallic materials in natural seawaters off the coast of Qingdao and Zhoushan for 120 d was monitored by means of a home-made multi-channel potential data acquisition device. The variation of corrosion potential versus immersion time and the steady corrosion potential for every test material were peculiarly assessed. Results showed that the free corrosion potential of metallic materials in natural seawater changed quickly in the initial corrosion stage. While different kind of metallic materials presents diversified variations of corrosion potential versus immersion time. The steady corrosion potentials of tested metallic materials in natural seawater can be ranked as a series from low to high as: magnesium anode, aluminum alloys, iron castings, carbon and low alloy steels, copper alloys and stainless steels.

Key words:  metal      natural seawater      corrosion potential      change rule     
Received:  07 March 2019     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51771057)
Corresponding Authors:  Guoqing DING     E-mail:  dinggq99@163.com

Cite this article: 

DING Guoqing,LI Xiangyang,ZHANG Bo,YANG Zhaohui,HUANG Guiqiao,YANG Haiyang,LIU Kaiji. Variation of Free Corrosion Potential of Several Metallic Materials in Natural Seawater. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 543-549.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.233     OR     https://www.jcscp.org/EN/Y2019/V39/I6/543

Fig.1  Corrosion potential vs time curves of carbon steels and low alloy steels (a), cast irons and low alloy steels (b) in Qingdao seawater
Fig.2  Corrosion potential vs time curves of carbon steels and low alloy steels (a), cast irons and low alloy steels (b) in Zhoushan seawater
Fig.3  Corrosion potential vs time curves of stainless steel and nickel-based alloys in Qingdao seawater
Fig.4  Corrosion potential vs time curves of stainless steels and nickel-based alloys in Zhoushan seawater
Fig.5  Corrosion potential vs time curves of aluminium alloys in Qingdao seawater
Fig.6  Corrosion potential vs time curves of aluminium alloys in Zhoushan seawater
Fig.7  Corrosion potential vs time curves of anodes in Qingdao seawater
Fig.8  Corrosion potential vs time curves of anodes in Zhoushan seawater
Fig.9  Corrosion potential vs time curves of copper alloys in Qingdao seawater
Fig.10  Corrosion potential vs time curves of copper alloys in Zhoushan seawater
Fig.11  Corrosion potential series of metals in Qingdao (a) and Zhoushan (b) seawater
[1] Liu D Y, Wei K J. Corrosion potentials of metals in natural sea water of South China Sea [J]. Corros. Sci. Prot. Technol., 1999, 11: 330
[1] (刘大扬, 魏开金. 金属在南海海域腐蚀电位研究 [J]. 腐蚀科学与防护技术, 1999, 11: 330)
[2] Huang G Q. Study of the corrosion potential of metals in seawater [J]. Corros. Prot., 2000, 21: 8
[2] (黄桂桥. 金属在海水中的腐蚀电位研究 [J]. 腐蚀与防护, 2000, 21: 8)
[3] Huang G Q, Jin W X, Hou W T. A study on relationship between corrosion resistance and corrosion potential of stainless steels in seawater [J]. J. Chin. Soc. Corros. Prot., 2000, 20: 35
[3] (黄桂桥, 金威贤, 侯文泰. 不锈钢在海水中的耐蚀性与腐蚀电位的关系 [J]. 中国腐蚀与防护学报, 2000, 20: 35)
[4] Huang G Q. Relationship between corrosion resistance and corrosion potential of aluminium alloys in seawater [J]. Corros. Sci. Prot. Technol., 1998, 10(3): 150
[4] (黄桂桥. 铝合金在海水中的耐蚀性与腐蚀电位的关系 [J]. 腐蚀科学与防护技术, 1998, 10(3): 150)
[5] Ding G Q, Yang Z H, Huang G Q, et al. Corrosion potentials and their change rules for ferrous metals in natural seawater [J]. Corros. Prot., 2018, 39: 99
[5] (丁国清, 杨朝晖, 黄桂桥等. 黑色金属在天然海水中的腐蚀电位及其变化规律 [J]. 腐蚀与防护, 2018, 39: 99)
[6] Ding G Q, Yang Z H, Huang G Q, et al. Corrosion potential of metals in natural river water [J]. Equip. Environ. Eng., 2017, 14(2): 31
[6] (丁国清, 杨朝晖, 黄桂桥等. 金属材料在天然河水中的腐蚀电位研究 [J]. 装备环境工程, 2017, 14(2): 31)
[7] Ding G Q, Yang Z H, Han D R, et al. A multi-channel potential automatic acquisition device [P]. Chin Pat, 20492709.8, 2015
[7] (丁国清, 杨朝晖, 韩东锐等. 一种多通道腐蚀电位自动采集装置 [P]. 中国专利, 20492709.8, 2015)
[8] Cao C N. Natural Environment Corrosion of Chinese Materials [M]. Beijing: Chemical Industry Press, 2005: 236
[8] (曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005: 236)
[9] Liu B, Duan J Z, Hou B R. Microbiologically influenced corrosion of 316L SS by marine biofilms in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 48
[9] (刘彬, 段继周, 侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2012, 32: 48)
[10] Dexter S C, Gao G Y. Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel [J]. Corrosion, 1988, 44: 717
[11] Mallica A, Scott V. Mechanism and prevention of biofilm on stainless steel corrosion [A]. No.19 Institute of Matorids [C]. London, UK. 1996: 23
[12] Zhao Y H, Lin L Y, Cui D W. Corrosion of aluminum alloys and copper alloys in water systems in the east and west of China [J]. Corros. Sci. Prot. Technol., 2005, 17: 335
[12] (赵月红, 林乐耘, 崔大为. 铝合金和铜合金在我国东西部水系统中暴露1年的腐蚀规律 [J]. 腐蚀科学与防护技术, 2005, 17: 335)
[13] Chen H Y, Zhu Y L, Shu C. Research on the selective corrosion of BFe30-1-1 alloy in NaCl solution [J]. Surf. Technol., 2005, 34(6): 14
[13] (陈海燕, 朱有兰, 舒畅. 铜镍合金BFe30-1-1在NaCl溶液中的腐蚀行为 [J]. 表面技术, 2005, 34(6): 14)
[14] Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing Galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
[14] (陈兴伟, 吴建华, 王佳等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363)
[15] Matsukawa Y, Chuta H, Miyashita M, et al. Galvanic series of metals conventionally used in Tap water with and without flow and its comparison to that in seawater [J]. Corrosion, 2011, 67: 125004
[1] ZHAO Pengxiong, WU Wei, DAN Yong. Application of Spatial-resolution Technology for In-situ Monitoring of Metal Corrosion[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[2] JIANG Xuguang, LIU Xiaobo. Research Progress and Direction Thinking on Corrosion of Key Heat Transfer Components in Waste Incineration Boilers[J]. 中国腐蚀与防护学报, 2020, 40(3): 205-214.
[3] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[4] LIU Wei, DU Kaifa, HU Xiaohong, WANG Dihua. Review on Research Status of Common Liquid Metal Corrosion in Liquid Metal Energy Storage Batteries[J]. 中国腐蚀与防护学报, 2020, 40(2): 81-86.
[5] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[6] Dan YANG,Dinglin LI,Yanliang HUANG,Pilong HUA,Xia ZHAO,Peng PENG,Xiutong WANG. Research Progress on Corrosion Issue and Metallic Material Selection Related with Seawater Pumped Storage Power Plant[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[7] Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[8] Yan SUN, Jiajia WU, Dun ZHANG, Shiqiang CHEN. Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters[J]. 中国腐蚀与防护学报, 2018, 38(4): 333-342.
[9] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[10] Yong HUANG, Shanlin WANG, Shuaixing WANG, Yubing GONG, Liming KE. Corrosion Resistance of Fe-based Bulk Metallic Glass with Sulfide Inclusions in HCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[11] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[12] Dahai XIA, Shizhe SONG, Jihui WANG, Zhimng GAO, Wenbin HU. Research Progress on Corrosion Mechanism of Tinned Steel Sheet Used for Food Parkaging[J]. 中国腐蚀与防护学报, 2017, 37(6): 513-518.
[13] Yao CHEN,Honghua ZHANG,Ganlan YANG,Junhuai XIANG. Influence of Heat Treatment on Microstructure of Composite Coatings of FeAl-Cr3C2[J]. 中国腐蚀与防护学报, 2017, 37(1): 58-62.
[14] Dongbai XIE,Guo SHAN. Rapid Identification of Liquid Accelerant in Fire Scene Environment[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[15] Xiangying XU,Fangfang GE,Peng LI,Rui SHU,Feng HUANG,Moucheng LI. Corrosion Resistance and Hardness of Amorphous Ti-B Based Coatings[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
No Suggested Reading articles found!