Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (6): 536-542    DOI: 10.11902/1005.4537.2018.168
Current Issue | Archive | Adv Search |
Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel
YUAN Wei,HUANG Feng(),GAN Lijun,GE Fangyu,LIU Jing
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(5759KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hydrogen induced cracking (HIC) sensitivity of X100 pipeline steels with different microstructures was evaluated according to the NACE TM 0284-2011 standard. While, the initiation and propagation of HIC, and the aggregation of hydrogen atoms in the steel were characterized via field emission scanning electron microscopy (FE-SEM) and hydrogen microprint technique. The relationship between hydrogen trapping efficiency and HIC sensitivity of X100 pipeline steels with different microstructure was analyzed by using kinetic parameters of hydrogen permeation. The results show that the HIC susceptibility of X100 pipeline steels with different microstructure could be ranked as follows: original specimen with ferrite-bainite microstructure>furnace-cooling specimen with massive ferrite microstructure>wind-cooling specimen with acicular ferrite microstructure. The microstructure has higher trapping efficiency, the more susceptible to HIC is. Hydrogen atoms tend to aggregate at the interface between inclusion and matrix, and the HIC could initiate at MnS inclusion, Ca-Al-Si-O composite inclusion and MnO inclusion in the steels.

Key words:  X100 pipeline steel      microstructure      HIC susceptibility      hydrogen trapping     
Received:  13 November 2018     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51871172)
Corresponding Authors:  Feng HUANG     E-mail:  Huangfeng@wust.edu.cn

Cite this article: 

YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 536-542.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.168     OR     https://www.jcscp.org/EN/Y2019/V39/I6/536

Fig.1  Schematic diagram of the experimental device for electrochemical hydrogen permeation testing
Fig.2  Procedure of hydrogen microprint
Fig.3  Microstructures of X100 pipeline steel before and after heat treatments: (a) original, (b) furnace cooling, (c) wind cooling
Fig.4  Surface morphologies of X100 pipeline steel after HIC sensitivity test: (a) original, (b) furnace cooling, (c) wind cooling
SampleDetecting sectionCSR / %CLR / %CTR / %
Original14.8143.010.0
28.4138.116.7
35.1126.210.0
Average6.1135.812.2
Furnace cooling13.3100.03.3
23.3100.03.3
32.678.63.3
Average3.192.93.3
Wind cooling1000
23.3100.03.3
32.781.03.3
Average2.060.32.2
Anti-HIC standard threshold value≦1.5≦15.0≦3.0
Table 1  HIC susceptibility parameters of X100 pipeline steel
Fig.5  SEM images of the propagation path of HIC cracks in X100 pipeline steel: (a) original, (b) furnace cooling, (c) wind cooling
Fig.6  BSD images (a~c) and EDS results (d~f) of MnS (a, d), Ca-Al-Si-O (b, e) and MnO (c, f) inclusions associated with HIC cracks in X100 pipeline steel
Fig.7  BSD image (a) and EDS results of points 1 (b) and 2 (c) in Fig.7a around Ca-Al-Si-O inclusion after hydrogen microprint
Fig.8  Electrochemical hydrogen permeation curves of X100 pipeline steel samples: (a) original, (b) furnace cooling, (c) wind cooling
ConditionJL mol·cm-1·s-1Deffm2·s-1Cappmol·m-3NT m-3
Original6.2×10-121.3×10-104.89.4×1025
Furnace cooling1.5×10-115.1×10-102.91.4×1025
Air cooling2.0×10-118.3×10-102.47.0×1024
Table 2  Kinetic parameters of hydrogen permeation of X100 pipeline steel samples
[1] Wan H X, Du C W, Liu Z Y, et al. The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment [J]. Ocean Eng., 2016, 114: 216
[2] Saleh A A, Hejazi D, Gazder A A, et al. Investigation of the effect of electrolytic hydrogen charging of X70 steel: II. Microstructural and crystallographic analyses of the formation of hydrogen induced cracks and blisters [J]. Int. J. Hydrog. Energy, 2016, 41: 12424
[3] Amin L V, Miresmaeili R, Abdollah-Zadeh A. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in X65 steel [J]. Mater. Sci. Eng., 2017, A679: 87
[4] Hejazi D, Haq A J, Yazdipour N, et al. Effect of manganese content and microstructure on the susceptibility of X70 pipeline steel to hydrogen cracking [J]. Mater. Sci. Eng., 2012, A551: 40
[5] Qu Y M, Huang F, Liu J, et al. Influence of microstructure on hydrogen induced cracks susceptibility and hydrogen trapping efficiency for X80 pipeline steel [J]. Chin. J. Mater. Res., 2010, 24: 508
[5] (曲炎淼, 黄峰, 刘静等. 显微组织对X80钢氢致裂纹敏感性和氢捕获效率的影响 [J]. 材料研究学报, 2010, 24: 508)
[6] Mohtadi-Bonab M A, Szpunar J A, Razavi-Tousi S S. A comparative study of hydrogen induced cracking behavior in API 5L X60 and X70 pipeline steels [J]. Eng. Fail. Anal., 2013, 33: 163
[7] Li J, Gao X H, Du L X, et al. Relationship between microstructure and hydrogen induced cracking behavior in a low alloy pipeline steel [J]. J. Mater. Sci. Technol., 2017, 33: 1504
[8] Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J]. Mater. Sci. Eng., 2011, A528: 4927
[9] Peng X H, Liu J, Huang F, et al. Effect of microstructure on hydrogen-induced cracking propagation and hydrogen trapping efficiency of pipeline steel [J]. Corros. Prot., 2013, 34: 882
[9] (彭先华, 刘静, 黄峰等. 微观组织对管线钢氢致裂纹扩展方式及氢捕获效率的影响 [J]. 腐蚀与防护, 2013, 34: 882)
[10] Huang F, Li X G, Liu J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel [J]. J. Mater. Sci., 2011, 46: 715
[11] Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
[12] Du C W, Zhao T L, Liu Z Y, et al. Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution [J]. Int. J. Miner. Metall. Mater., 2016, 23: 176
[13] Gan L J, Huang F, Liu J Y, et al. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J]. Int. J. Hydrog. Energy, 2018, 43: 2293
[14] NACE TM0284-2011. Evaluation of pipeline and pressure vessel steels for resistance to hydrogen-induced cracking [S]. 2011
[15] Xue H B, Cheng Y F. Characterization of inclusions of X80 pipeline steel and its correlation with hydrogen-induced cracking [J]. Corros. Sci., 2011, 53: 1201
[16] Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al. An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel [J]. Int. J. Hydrog. Energy, 2016, 41: 4185
[17] Huang F, Liu S, Liu J, et al. Sulfide stress cracking resistance of the welded WDL690D HSLA steel in H2S environment [J]. Mater. Sci. Eng,, 2014, A591: 159
[18] Wang S H, Luu W C, Ho K F, et al. Hydrogen permeation in a submerged arc weldment of TMCP steel [J]. Mater. Chem. Phys., 2002, 77: 447
[19] Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 92
[19] (褚武杨, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 92)
[20] Zhang T M, Zhao W M, Deng Q S, et al. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen [J]. Int. J. Hydrog. Energy, 2017, 42: 25102
[1] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[2] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[3] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[4] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[6] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[7] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[8] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[9] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[10] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[11] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[12] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[13] Guangrui JIANG, Guanghui LIU. Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[14] Zhenguo NIU, Pushan GUO, Hong YE, Lijing YANG, Cheng XU, Zhenlun SONG. Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[15] Yu TENG,Xu CHEN,Chuan HE,Yichuang WANG,Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
No Suggested Reading articles found!