Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (6): 527-535    DOI: 10.11902/1005.4537.2018.170
Current Issue | Archive | Adv Search |
Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel
HUANG Chen,HUANG Feng(),ZHANG Yu,LIU Haixia,LIU Jing
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(6446KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The galvanic corrosion for weld joints of high strength weathering steel in simulated marine atmosphere was investigated by means of scanning kelvin probe (SKP), electrochemical noise, cyclic wet/dry accelerated corrosion test, and so on. The results indicated that the galvanic corrosion occurred on the welded joint of high strength weathering steel due to the potential difference, while the heat affected zone is the most anode area whereas the base metal is the most cathode area. And the variation of galvanic current on the base metal is differentiated as two stages of decline and stability, the corresponding time of inflexion point synchronizes with the stabilization of the rust layer. There are two stages in the corrosion process of the welded joint: the corrosion rate decreases rapidly at the initial stage of corrosion, and then remains stable in the later stage of corrosion, which may be related to its galvanic corrosion dynamics.

Key words:  A710 steel      welded joint      galvanic corrosion      SKP     
Received:  04 November 2018     
ZTFLH:  TG172.2  
Fund: National Key R&D Program of China(2017YFB0304800)
Corresponding Authors:  Feng HUANG     E-mail:  huangfeng@wust.edu.cn

Cite this article: 

HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(6): 527-535.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.170     OR     https://www.jcscp.org/EN/Y2019/V39/I6/527

MaterialCSiMnPSNiCrCuMoFe

A710

MCJ65Q

0.045

0.10

0.29

0.06

0.63

1.85

0.009

0.010

0.005

0.005

1.23

0.40

0.78

---

1.01

---

0.19

0.42

Bal.

Bal.

Table 1  Chemical compositions of base alloy and weld alloy (mass fraction / %)
Fig.1  Macro morphology of welded joint of A710 steel
Fig.2  Schematic diagrams for measurements of corrosion depths of A710 steel (a) and welded joint (b)
Fig.3  Measurement circuit of galvanic current of BM- (HAZ+BM) couple
Fig.4  Microstructural characteristics of BM (a), HAZ (b) and WM (c) zones of A710 welded joint
Fig.5  SKP results (mV) of A710 steel welded joint: (a) the area scan of potential difference, (b) the variation of potential with X when Y=1500 μm
Fig.6  Galvanic current of BM zone of A710 welded joint as a function of time
Fig.7  Average galvanic current of BM in the immersion stage as a function of wet/dry cyclic number
Fig.8  Corrosion rates of A710 steel and its welded joint as a function of corrosion time
Fig.9  Surface topographies of A710 weathering steel (a) and BM (b), HAZ (c) and WM (d) of the welded joint after 8 d alternating wet/dry exposure
Fig.10  Cross-sectional morphologies of the rust layers formed on A710 weathering steel (a~e) and its welded joint (f~j) after corrosion for 1 d (a, f), 3 d (b, g), 6 d (c, h), 12 d (d, i) and 24 d (e, j)
Fig.11  XRD patterns of the corrosion products formed on A710 steel (a) and its welded joint (b)
Time / dA710 steelWelded joint
α-FeOOHα/γ*α-FeOOHα/γ*

3

12

24

7.9%

48.4%

51.5%

0.086

0.938

1.062

6.7%

22.4%

27.7%

0.072

0.289

0.383

Table 2  Relative mass fractions of α-FeOOH and values of α/γ* in the corrosion products formed on A710 steel and its welded joint after corrosion for 3, 12, 24 d
Fig.12  Impedance values of A710 steel (a) and its welded joint (b) as a function of frequency
Fig.13  Impedance values of A710 weathering steel and its welded joint at 10 mHz (a) and 10 kHz (b)
Fig.14  Galvanic corrosion models of A710 steel welded joint at the initial corrosion stage (a, b) and the later corrosion stage (c)
[1] Chen L X. Discussion on the application of mechanical welding technology in steel structure construction [J]. China High-Tech Enterpr., 2012, (23): 56
[1] (陈立新. 浅谈钢结构施工中机械焊接工艺的应用 [J]. 中国高新技术企业, 2012, (23): 56)
[2] Li J C. Study on the microstructure and corrosion resistance of 2205 duplex stainless steel welded joints [D]. Fushun: Liaoning University of Petroleum and Chemical Technology, 2010
[2] (李吉承. 2205双相不锈钢焊接接头组织与耐蚀性研究 [D]. 抚顺: 辽宁石油化工大学, 2010)
[3] Huang C, Huang F, Liu J, et al. Corrosion resistance of the welded joint of A710 high strength weathering steel [J]. J. Wuhan Univ. Sci. Technol., 2017, 40: 350
[3] (黄宸, 黄峰, 刘静等. A710高强耐候钢焊接接头耐蚀性分析 [J]. 武汉科技大学学报, 2017, 40: 350)
[4] Kong X D, Yang M B, Zhu M W. Effects of metallurgical factors on corrosion behaviors of welded joints of low-alloy steels [J]. Trans. China Weld. Soc., 2009, 30(7): 105
[4] (孔小东, 杨明波, 朱梅五. 冶金因素对低合金钢焊接接头耐蚀性的影响 [J]. 焊接学报, 2009, 30(7): 105)
[5] Fang N, Chen G M, Zhu H W, et al. Statistical analysis of leakage accidents of submarine pipeline [J]. Oil Gas Stor. Transp., 2014, 33: 99
[5] (方娜, 陈国明, 朱红卫等. 海底管道泄漏事故统计分析 [J]. 油气储运, 2014, 33: 99)
[6] Liu C H, Liu W, Zhao Y B, et al. Galvanic corrosion of X70 dissimilar weld joints [J]. J. Univ. Sci. Technol. Beijing, 2008, 30(1): 25
[6] (刘成虎, 柳伟, 赵耀斌等. X70异种钢焊接接头的电偶腐蚀行为 [J]. 北京科技大学学报, 2008, 30(1): 25)
[7] Tian Y Q, Chang W, Hu L H, et al. Risk of galvanic corrosion among API X65, 316L and inconel 625 [J]. Surf. Technol., 2016, 45(5): 128
[7] (田永芹, 常炜, 胡丽华等. API X65、316L不锈钢及Inconel 625间电偶腐蚀风险研究 [J]. 表面技术, 2016, 45(5): 128)
[8] Han L Q, Lin G B, Wang Z D, et al. Study on corrosion resistance of 316L stainless steel welded joint [J]. Rare Met. Mater. Eng., 2010, 39: 393
[8] (韩丽青, 林国标, 王自东等. 316L不锈钢焊接头耐蚀性能研究 [J]. 稀有金属材料与工程, 2010, 39: 393)
[9] Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
[10] Han L Q, Lin G B, Wang Z D, et al. Study on corrosion resistance of 316L stainless steel welded joint [J]. Rare Met. Mater. Eng., 2010, 39: 393
[11] Guo J, Hou W T, Xu L K, et al. Research progress of galvanic corrosion in dry and wet alternative marine environment [J]. Equip. Environ. Eng., 2012, (5): 67
[11] (郭娟, 侯文涛, 许立坤等. 海洋干湿交替环境下电偶腐蚀及其研究方法进展 [J]. 装备环境工程, 2012, (5): 67)
[12] Baikie I D, Venderbosch E, Meyer J A, et al. Analysis of stray capacitance in the Kelvin method [J]. Rev. Sci. Instrum., 1991, 62: 725
[13] Lu X Y, Li Y, Li Y J. Study of galvanic corrosion sensitivity between any couple of stud, weldment, or beam [J]. Ind. Constrt., 2015, 45(8): 125
[13] (路新瀛, 李阳, 李源晋. 栓钉-焊肉-梁板间电偶腐蚀敏感性研究 [J]. 工业建筑, 2015, 45(8): 125)
[14] Chen X P, Wang X D, Liu Q Y, et al. Study on microstructure and electrochemical properties of α-FeOOH in weathering rust layer [A]. Annual Meeting of National Low Alloy Steel Metals [C]. Qinhuangdao, 2008
[14] (陈小平, 王向东, 刘清友等. 耐候锈层α-FeOOH组织微观形貌及电化学性能的研究 [A]. 2008年全国低合金钢金属年会 [C]. 秦皇岛, 2008)
[15] Gao D D. Microstructures and mechanical properties of laser-MAG hybrid welding on S355J2W weathering steel [D]. Changchun: Jilin University, 2013
[15] (高丹丹. S355J2W耐候钢激光-MAG复合焊接头组织与性能研究 [D]. 长春: 吉林大学, 2013)
[16] Jin D. Study on the microstructure and corrosion resistance mechanism of weathering bridge steel [D]. Shenyang: Northeastern University, 2013
[16] (金铎. 耐候桥梁钢的组织性能及耐腐蚀机理研究 [D]. 沈阳: 东北大学, 2013)
[17] Zhang Y, Qin Z X, Xu H J, et al. Corrosion resistance of dissimilar metal joints of economic ferritic stainless steel and weathering steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 115
[17] (张勇, 覃作祥, 许鸿吉等. 经济型铁素体不锈钢与耐候钢异种金属接头的耐蚀性能 [J]. 中国腐蚀与防护学报, 2012, 32(2): 115)
[18] Yin J J. Study on corrosion of S355J2W weathering steel welded joints [D]. Beijing: Beijing Jiaotong University, 2011
[18] (阴敬甲. S355J2W耐候钢焊接接头腐蚀性能研究 [D]. 北京: 北京交通大学, 2011)
[19] Li S P, Guo J, Yang S W, et al. Effect of carbon content and microstructure on the corrosion resistance of low alloy steel [J]. J. Univ. Sci. Technol. Beijing, 2008, 30(1): 58
[19] (李少坡, 郭佳, 杨善武等. 碳含量和组织类型对低合金钢耐蚀性的影响 [J]. 北京科技大学学报, 2008, 30(1): 58)
[20] Li W F, Sun Z H, Chen Y, et al. Study on the galvanic corrosion behavior of welded joints of carbon steel pipe [J]. Weld. Technol., 2016, 45(7): 19
[20] (李维锋, 孙紫麾, 陈英等. 碳钢管线焊接接头的电偶腐蚀行为研究 [J]. 焊接技术, 2016, 45(7): 19)
[1] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[2] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[3] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[4] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[5] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[7] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[8] Yanjie LIU,Zhenyao WANG,Binbin WANG,Yan CAO,Yang HUO,Wei KE. Mechanism of Galvanic Corrosion of Coupled 2024 Al-alloy and 316L Stainless Steel Beneath a Thin Electrolyte Film Studied by Real-time Monitoring Technologies[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[9] Xin ZHAO,Yulong HU,Fu DONG,Xiaodong ZHANG,Zhiqiao WANG. Effect of Moistened Electrical Insulation on Galvanic Corrosion Behavior of Dissimilar Metals[J]. 中国腐蚀与防护学报, 2017, 37(2): 175-182.
[10] Qian HU,Jing LIU,Yukun WANG,Feng HUANG,Mingjie DAI,Yanglai HOU. Corrosion Performance of Different Zones for Weld Joint of A710 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(6): 611-616.
[11] Qiang WEI,Moucheng LI,Jianian SHEN. Galvanic Corrosion Behavior of Two Stainless Steels in Simulated Muffler Environments[J]. 中国腐蚀与防护学报, 2015, 35(3): 233-238.
[12] ZHAO Xiaohong, GUO Quanzhong, DU Keqin, GUO Xinghua, WANG Yong. Galvanic Corrosion Behavior of Couples of Hot Rolled Steel SS400 and Cold Rolled Steel ST12 with Two Coatings[J]. 中国腐蚀与防护学报, 2015, 35(1): 86-90.
[13] LIU Zhiyong, WAN Hongxia, LI Chan, DU Cuiwei, LI Xiaogang, LIU Xiang. Comparative Study on Corrosion of X65 Pipeline Steel Welded Joint in Simulated Shallow and Deep Sea Environment[J]. 中国腐蚀与防护学报, 2014, 34(4): 321-326.
[14] XU Hongyan,LI Zhiyong. Galvanic Corrosion of AZ91D Magnesium Alloy[J]. 中国腐蚀与防护学报, 2013, 33(4): 298-305.
[15] WAN Li,DU Wei,LI Jiajia,DING Yi,CHEN Burong. Inhibition Effects of Odtadecanethiol Self-assembled Monolayers for Bronze-silver Galvanic Corrosion[J]. 中国腐蚀与防护学报, 2013, 33(3): 245-250.
No Suggested Reading articles found!