Please wait a minute...
J Chin Soc Corr Pro  1991, Vol. 11 Issue (4): 309-318    DOI:
Current Issue | Archive | Adv Search |
THE EFFECTS OF POTENTIAL UPON THE DEZINCIFICATION COEFFICIENT AND SUSCEPTIBILITY TO SCC OF 70/30 BRASS IN 1N NaNO_2
Yu Jian Luo Xianjing and Zhao Zhijun (Shanghai Research Institute of Materials)
Download:  PDF(796KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Atomic absorption spectroscopy was used to determine the dezincification coefficient of 70/30 brass subjected to slow-strain rate stress corrosion tests in 1 normal aqueous sodium nitrite solution over the potential range from -0.1~+0.1V(SCE). The results showed that extensive dezincification occurred in all the tests but potential had opposite effects on the dezincification coefficient and susceptibility to stress corrosion cracking; an increase in potential accelerated crack velocity but depressed the dezincification coefficient. The effect of increasing sttrain rate on the increase of dezincification coefficient was diminished with increase in potential. Similar tendencies of dezincification coefficient as functions of potential and strain rate were obtained by theoretical calculations based on anodic dinsolution model using available date measured by rapid straining electrode. The indication is that the increase of proportion of copper dissolution in the dissolution ratio of zinc to copper was responsible for the drop of dezincification coefficient, even though the total dissolution rate increased with increasing potential, so was zinc in the brass, to enhance the susceptibility to cracking. The implication of the pressent results relevant to the cracking mechanism is further discussed.
Received:  25 August 1991     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

Yu Jian Luo Xianjing and Zhao Zhijun (Shanghai Research Institute of Materials). THE EFFECTS OF POTENTIAL UPON THE DEZINCIFICATION COEFFICIENT AND SUSCEPTIBILITY TO SCC OF 70/30 BRASS IN 1N NaNO_2. J Chin Soc Corr Pro, 1991, 11(4): 309-318.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1991/V11/I4/309

[1] Edeleanu, C.; and Forty, A. J.; Phil. Mag. 5, 1029(1960)
[2] Graf, L.; The Fundamental Aspects of Stress Corrosion Cracking, Ohio State University(1969) , Eds. Staehie, R. W.; Forty, A.J.; and Rooyen, D.; P159.
[3] Pickering, H. W.; and Byrne, P. J.; Corrosion, 29,325(1973)
[4] Pinchback, T. R.; Clough, S. P,; and Heldt, L. A.; Corrosion, 32, 469(1976)
[5] Newman, R. C.; and Burstein, G. T.; Corr. Sci., 21, 119(1981)
[6] Pchelnikov, A. P.; Simikov, A D.; Marshakov, I. K.; and Losev, V. V.; Electrochimica Acta, 26,591 (1981)
[7] Namboodhiri ,T. K. G.; and Tripathi, R. S.; Corr. Sei., 26,745(1986) .
[8] Leidersback, H, JR.; and Kissiger, R.; Corrosion, 28, 128(1072)
[9] Polan, N. W.; Popplewell, J. M.; and Pryor, M. J.; J. Electrochem. Soc., 126, 1299(1979)
[10] Parthasarathi, A.; and Polan, N. W.; Metall. Trans. A; 13A, 2027(1982)
[11] Yu. J.; HoLroyd, N. J. H.; and Parkius, R. N.; Environment Sensitive Fracture, Eds. Dean. S. W.; pugh, E. N.; and Ugiansky, G. M.; ASTM STP 821, 288(1984)
[12] Alvarez, M. G.; Manfredi, C.; Giordano, M.; and Galvele, J. R.; Corr. Sci., 24, 769(1984)
[13] Yu, J.; Parkins, R. N.; Xu, Y.; Thompson, G.; and Wood, G. C.; Corr. Sci.; 27, 141(1987)
[14] Yu, J. rand Parkins, R. N. Corr. Sci., 27, 159(1987)
[15] Rebak, R. B.; Carranza, R. M.; and Galvele, J. R.; Corr. Sci., 28, 1089(1988)
[16] Heidersbeck, R. H. JR.; and Verink, E. JR.; Corrosion, 28, 397(1972) .
[17] Poutbaix, M.; Atlas of Electrochemical Fqiuilibriacal in Aqueous Solutions, Pergamon Press, New York(1966)
[18] Pednekar, S. P.; Agrawal, A. K.; Chaung, H. E.; and Staehle, R. W.; J. Electrochem. Soc., 126 701 (1979) .
[19] 黄湘泰.张美华,赵志军,罗贤竟.俞健,“用放射性同位素示踪技术研究黄铜应力腐蚀动态过程的脱锌”。上海材料研究所1989年12月实验阶段总结报告.国家自然科学基金资助项目.待发表。
No related articles found!
No Suggested Reading articles found!