Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1725-1733    DOI: 10.11902/1005.4537.2025.008
Current Issue | Archive | Adv Search |
Corrosion Behavior of 316L Stainless Steel Welded Joints in S-H2S-containing Environments
LI Ke1(), LI Tianlei1, CAO Xiaoyan1, JIANG Liu1, WANG Yaxi1, XIAO Zeyu2, ZHONG Xiankang3
1 China Petroleum Engineering & Construction Corporation Southwest Company, Chengdu 610041, China
2 School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
3 School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, China
Cite this article: 

LI Ke, LI Tianlei, CAO Xiaoyan, JIANG Liu, WANG Yaxi, XIAO Zeyu, ZHONG Xiankang. Corrosion Behavior of 316L Stainless Steel Welded Joints in S-H2S-containing Environments. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1725-1733.

Download:  HTML  PDF(5329KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

316L stainless steel is widely used in the sulfur-containing natural gas purification equipment and pipelines. But, its welded seam and heat-affected zone may pose a higher risk of corrosion, because of their lower resistance of corrosion refer to base material. Therefore, the corrosion resistance of 316L stainless steel in welded joints is crucial to guaranteeing the safe operation of the relevant equipment and pipelines. Herein, the corrosion behavior of the substrate, welded seam, and heat-affected zone of 316L stainless steel in a simulated service condition was investigated using weight loss method, ultra-depth three-dimensional scanning microscopy, and X-ray photoelectron spectroscopy (XPS). The composition and semiconductor properties of the formed passive films were characterized using XPS and the Mott-Schottky method. The results show that, when H2S is free, the steel exhibit very light corrosion, with a general corrosion rate of only 0.001~0.004 mm/a. The content of H2S correlates with the corrosion rate, as the H2S content increases, the corrosion rate also rises; for example, in conditions of 0.1 MPa H2S at 120 oC, the general corrosion rate of the welded seam, base material, and heat-affected zone is 0.316, 0.472, and 0.551 mm/a, respectively, and the localized corrosion rates is 86.590, 42.757, and 60.861 mm/a. At 90 oC and 1 MPa H2S, the general corrosion rate of them is 1.136, 1.001, and 0.861 mm/a, and the localized corrosion rateis 125.595, 90.297, and 124.291 mm/a. These results indicate that the welded seam is a high-risk area for localized corrosion, with the localized corrosion rate is approximately 1.4 to 2 times that of the base material. XPS results revealed that the main corrosion products were iron sulfides, iron oxides, and Cr(OH)3. The analysis of the semiconductor properties of the formed passive films showed that the welded seam had the highest carrier concentration, making the passive film in this region more susceptible to damage, leading to an increased risk of localized corrosion.

Key words:  welded joints      316L stainless steel      XPS      localized corrosion      elemental sulfur     
Received:  02 January 2025      32134.14.1005.4537.2025.008
ZTFLH:  TG172  
Corresponding Authors:  LI Ke, E-mail: like_sw@cnpc.com.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.008     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1725

Temperature / oCpHH2S pressure / MPaChloride concentration / mg·L-1Time / d
604.50500007
903.5010007
903.5110003
1203.50.110003
Table 1  Experimental parameters under simulated working conditions
Fig.1  General corrosion rates of WS, BM and HAZ of 316L stainless steel under different experimental conditions
Fig.2  3D surface morphologies of WS (a, b), BM (c, d) and HAZ (e, f) of 316L stainless steel after corrosion under 90 oC, pH = 3.5, 1 MPa H2S, 1000 mg/L Cl- (a, c, e) and 120 oC, pH = 3.5, 0.1 MPa H2S, 1000 mg/L Cl- (b, d, f)
Temperature oCWelded seamBase materialHeat affected zone
90125.59590.297124.291
12086.59042.75760.861
Table 2  Localized corrosion rates of WS, BM and HAZ of 316L stainless steel under different experimental conditions
Fig.3  XPS fine spectra of Fe 2p (a, b), S 2p (c, d) and Cr 2p (e, f) for WS, BM and HAZ of 316L stainless steel after corrosion under 90 oC, pH = 3.5, 1 MPa H2S, 1000 mg/L Cl- (a, c, e) and 120 oC, pH = 3.5, 0.1 MPa H2S, 1000 mg/L Cl- (b, d, f)
Experimental conditionsSpectra

Corrosion

product

Peak

area / %

Experimental

conditions

Spectra

Corrosion

product

Peak

area / %

Welded seam 90 oCFe 2pFeS45.72Welded seam 120 oCFe 2pFeS17.86
pH = 3.5Fe2O336.31pH = 3.5Fe2O325.18
1 MPa H2SFeS217.950.1 MPa H2SFeS256.91
Cl- = 1000 mg/LCr 2pCr(OH)3100.00Cl- = 1000 mg/LCr 2pCr(OH)3100.00
S 2pSulfate15.56S 2pSulfate
S846.93S888.71
FeS16.46FeS
FeS221.05FeS211.29
Base material 90 oCFe 2pFeS31.03Base material 120 oCFe 2pFeS24.30
pH = 3.5Fe2O328.86pH = 3.5Fe2O334.49
1 MPa H2SFeS240.110.1 MPa H2SFeS241.21
Cl- = 1000mg/LCr 2pCr(OH)3100.00Cl- = 1000 mg/LCr 2pCr(OH)3100.00
S 2pSulfate12.88S 2pSulfate3.05
S855.52S879.24
FeS4.94FeS
FeS226.66FeS217.71
Heat affected zone 90 oCFe 2pFeS24.30Heat affected zone 120 oCFe 2pFeS62.74
pH = 3.5Fe2O324.64pH = 3.5Fe2O314.98
1 MPa H2SFeS251.050.1 MPa H2SFeS220.36
Cl- = 1000 mg/LCr 2pCr(OH)3100.00Cl- = 1000 mg/LCr 2pCr(OH)3100.00
S 2pSulfate11.77S 2pSulfate1.55
S840.86S861.58
FeS28.31FeS5.90
FeS219.06FeS230.97
Table 3  XPS characterization results of the corrosion products
Fig.4  Mott-Schottky plots of WS (a), BM (b) and HAZ (c) of 316L stainless steel
Fig.5  Carrier concentrations of the passive films for WS, BM and HAZ of 316L stainless steel
Fig.6  XPS analysis results of the passive films for WS, BM and HAZ of 316L stainless steel
[1] Fu A Q, Feng Y R, Cai R, et al. Downhole corrosion behavior of Ni-W coated carbon steel in spent acid & formation water and its application in full-scale tubing [J]. Eng. Failure Anal., 2016, 66: 566
[2] Li Y, Lin H C, Lv M, et al. The corrosion behavior of sulfur on the carbon steel used in oil & gas field with high concentration of H2S [J]. Corros. Sci. Prot. Technol., 1996, 8: 252
(李 瑛, 林海潮, 吕 明 等. 元素硫对特高含H2S气井用油管钢的腐蚀 [J]. 腐蚀科学与防护技术, 1996, 8: 252)
[3] Wang C. The effect of sulfur deposition on gas well deliverability [J]. Petrol. Explorat. Dev., 1999, 26(5): 56
(王 琛. 硫的沉积对气井产能的影响 [J]. 石油勘探与开发, 1999, 26(5): 56)
[4] Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
(葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271)
[5] Zhang Q, Li Q A, Wen J B, et al. Progress in research on CO2/H2S corrosion of tubular goods [J]. Corros. Prot., 2003, 24: 277
(张 清, 李全安, 文九巴 等. CO2/H2S对油气管材的腐蚀规律及研究进展 [J]. 腐蚀与防护, 2003, 24: 277)
[6] Pots B F M, Kapusta S D, John R C, et al. Improvements on de Waard-Milliams corrosion prediction and applications to corrosion management [A]. Corrosion 2002 [C]. Denver, 2002
[7] Agrawal A K, Durr C, Koch G H. Sulfide films and corrosion rates of AISI 1018 carbon steel in saline solutions in the presence of H2S and CO2 at temperatures Up to 175F [A]. Corrosion 2004 [C]. New Orleans, 2004
[8] Wang Z, Zhang L, Tang X, et al. Investigation of the deterioration of passive films in H2S-containing solutions [J]. Int. J. Miner. Metall. Mater., 2017, 24: 943
[9] Bai Z Q, Li H L, Liu D X, et al. Corrosion factors of N80 steel in simulated H2S/CO2 environment [J]. Mater. Prot., 2003, 36(4): 32
(白真权, 李鹤林, 刘道新 等. 模拟油田H2S/CO2环境中N80钢的腐蚀及影响因素研究 [J]. 材料保护, 2003, 36(4): 32)
[10] Schmitt G. Effect of elemental sulfur on corrosion in sour gas systems [J]. Corrosion, 1991, 47: 285
[11] Tian H Y, Wang X, Cui Z Y, et al. Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater [J]. Corros. Sci., 2018, 144: 145
[12] Li K, Li T L, Shi D Y, et al. Effect of elemental sulfur on the corrosion of 825 alloy in high temperature and high pressure environment containing CO2/H2S [J]. Equip. Environ. Eng., 2020, 17(11): 10
(李 科, 李天雷, 施岱艳 等. 元素硫对825合金在高温高压含CO2/H2S环境中腐蚀行为的影响 [J]. 装备环境工程, 2020, 17(11): 10)
[13] Zhan Z, Gao Q Y, Wang B, et al. Corrosion behavior of steels commonly used in heat exchanger tube in high-temperature medium of condensate water containing elemental sulfur [J]. Mater. Prot., 2022, 55(9): 81
(战 征, 高秋英, 王 贝 等. 常用换热器管束钢材在高温含元素硫凝析水介质中的腐蚀行为 [J]. 材料保护, 2022, 55(9): 81)
[14] Li L, Li Z, Liu H X, et al. Applicability of 3 stainless steels in H2S/CO2 and high salinity brine environment [J]. Corros. Prot., 2022, 43(4): 7
(李 磊, 李 中, 刘和兴 等. 三种不锈钢油管钢在高矿化度H2S/CO2环境中的适用性 [J]. 腐蚀与防护, 2022, 43(4): 7)
[15] Xiao W W, Zhu Y Y, Ge P L, et al. Analysis on corrosion failure of 20/316L bimetal lined pipe [J]. Mater. Prot., 2017, 50(7): 92
(肖雯雯, 朱原原, 葛鹏莉 等. 20/316L双金属管的腐蚀失效原因分析 [J]. 材料保护, 2017, 50(7): 92)
[16] He W H, Liu Y, Yang S Y, et al. Effect of sensitization on electrochemical behavior and intergranular corrosion of conventional and additively manufactured 316L stainless steels [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1331
(何武豪, 刘 阳, 杨思懿 等. 敏化处理对传统和增材制造316L不锈钢电化学和晶间腐蚀的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 1331)
[17] Liu J Y, Dong L J, Zhang Y, et al. Research progress on sulfide stress corrosion cracking of dissimilar weld joints in oil and gas fields [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 863
(刘久云, 董立谨, 张 言 等. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 863)
[18] Li Z D, Cui Z D, Hou X Y, et al. Corrosion property of nuclear grade 316LN stainless steel weld joint in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 106
(李兆登, 崔振东, 侯相钰 等. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 106)
[19] Ge H H, Zhou G D, Wu W Q. Passivation model of 316 stainless steel in simulated cooling water and the effect of sulfide on the passive film [J]. Appl. Surf. Sci., 2003, 21: 321
[20] Liu Y C, Zhong X K, Hu J Y. Characteristics and mechanisms of elemental sulfur induced corrosion of sulfur-resistant steels in wet flow CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 369
(刘毅超, 钟显康, 扈俊颖. 湿气环境中抗硫钢的元素硫腐蚀特征及腐蚀机理 [J]. 中国腐蚀与防护学报, 2022, 42: 369)
[21] Fang H, Young D, Nešić S. Elemental sulfur corrosion of mild steel at high concentrations of sodium chloride [J]. NACE Int., 2009, 25: 2592
[22] Lu X Y, Feng X G, Lu S, et al. Corrosion behavior of TIG welded joints of 316L stainless steel in H2S solutions [J]. Trans. China Weld. Inst., 2017, 38(5): 69
(卢向雨, 冯兴国, 芦 笙 等. H2S溶液中316L不锈钢TIG焊接头的腐蚀性能 [J]. 焊接学报, 2017, 38(5): 69)
[23] Malhotra D, Dhillon J S, Shahi A S. New insights into metallurgical, corrosion, passive film and fatigue characteristics of AISI 316L submerged arc welded joints [J]. J. Mater. Sci., 2022, 57: 19571
[24] Yang L Q, Zhu S D, Li T, et al. Mechanism of elemental sulfur hydrolysis reaction [J]. Chem. Res. Appl., 2016, 28: 390
(杨力强, 朱世东, 李 涛 等. 元素硫水解反应机理研究 [J]. 化学研究与应用, 2016, 28: 390)
[1] WANG Lifang, SHANG Mengchao, GAO Xiyu, LIU Guichang, SUN Wen. Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[2] HU Na, PENG Wenshan, GUO Weimin, LIU Tiannan, DUAN Tigang, LIU Shaotong. Mechanical-electrochemical Corrosion Behavior and Degradation Regularity of High Strength Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
[3] MA Heng, WANG Zhongxue, PANG Kun, ZHANG Qingpu, CUI Zhongyu. Localized Corrosion Behavior Induced by Corrosion-active Inclusion in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2025, 45(4): 1005-1013.
[4] ZHANG Guoqing, YU Zhixia, WANG Yuesong, WANG Zhi, JIN Zhengyu, LIU Hongwei. Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[5] HAN Yulong, LI Jian, GUO Liya, YANG Bianjiang, LU Hengchang, WEI Xicheng, DONG Han. Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
[6] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[7] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[8] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[9] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[10] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[11] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[12] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[13] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[14] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[15] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
No Suggested Reading articles found!