Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1717-1724    DOI: 10.11902/1005.4537.2025.054
Current Issue | Archive | Adv Search |
Effect of PVB Addition on Microstructure and Oxidation Resistance of Silicide Coatings on TZM Mo-alloy by Slurry Method
LONG Jiayi1, WANG Li1(), ZHAO Weiguo1, HAN Jiayu1, WANG Qingsong1, LIU Hailong1, GAO Lili1, HU Ping1(), FENG Pengfa2
1 National and Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Jinduicheng Molybdenum Industry Co. Ltd. , Xi'an 710077, China
Cite this article: 

LONG Jiayi, WANG Li, ZHAO Weiguo, HAN Jiayu, WANG Qingsong, LIU Hailong, GAO Lili, HU Ping, FENG Pengfa. Effect of PVB Addition on Microstructure and Oxidation Resistance of Silicide Coatings on TZM Mo-alloy by Slurry Method. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1717-1724.

Download:  HTML  PDF(8650KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Silicide coating is often used as the main component of oxidation resistance coating on Mo-alloy due to the formation of SiO2 glass phase during high temperature service. At present, slurry method is widely used to prepare silicide coating on Mo-alloy surface due to easy operation and no-need for large equipment. However, the binder content in slurry method and its effect on the microstructure and oxidation resistance of the coating are still unclear. In this paper, silicide coatings with different binder contents were prepared on TZM Mo-alloy surface by slurry sintering method. The microstructure and phase composition of silicide coatings prepared with different binder PVB contents were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and then the oxidation resistance of Mo-alloy with coating was examined in air at 1000, 1100 and 1200 oC for 1 h respectively. The results showed that with the increase of PVB content in the range of 2% to 10%, the number and width of cracks of the prepared coatings decreased, correspondingly the weight loss of the coatings induced by high temperature oxidation is alleviated. However, when the PVB content exceeds than 10%, there is no significant improvement in crack formation and the weight loss. In summary, the optimal effect is achieved when the PVB content is 10%.

Key words:  molybdenum alloy      slurry method      PVB binder      silicide coating      oxidation resistance     
Received:  19 February 2025      32134.14.1005.4537.2025.054
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52404410);National Natural Science Foundation of China(52374401);National Natural Science Foundation of China(52404409);Shaanxi Basic Research Program of Natural Science(2024JC-YBQN-0367);Shaanxi Key Research and Development Program(2024QCYKXJ-116);General Special Project of Scientific Research Program of Shaanxi Provincial Department of Education(24JK0515);Xi'an Science and Technology Program(24ZDCYJSGG0043)
Corresponding Authors:  WANG Li, E-mail: 13269528303@163.comHU Ping, E-mail: huping@xauat.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.054     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1717

Fig.1  Surface SEM morphologies and enlarged images of the coatings prepared from the precursor slurries containing 2% (a1, a2), 10% (b1, b2) and 20% (c1, c2) PVB
Fig.2  Cross-sectional morphologies of the coatings prepared from the precursor slurries containing 2% (a), 10% (b) and 20% (c) PVB
Fig.3  Composition analysis results of the coatings prepared from the precursor slurries containing 2% (a), 5% (b),10% (c), 15% (d), 20% (e) and 30% (f) of PVB after oxidation at 1000 oC
Fig.4  XPS results of the coating prepared from the precursor slurry containing 10% PVB before and after oxidation at 1000 oC: (a) full spectrum, (b) Si 2p, (c) O 1s, (d) Mo 3d
Fig.5  Mass losses of the coatings prepared from the precursor slurries containing different contents of PVB after oxidation at 1000, 1100 and 1200 oC
Fig.6  XRD patterns of the coatings prepared from the precursor slurries containing 2%, 10%, 20% and 30%PVB before (a) and after (b) oxidation at 1000 oC for 1 h
Fig.7  Contents of Si and Mn in the coatings prepared from the precursor slurries containing different contents of PVB, and mass losses after oxidation at 1000 oC for 1 h
Fig.8  Mechanism diagrams of the influence of PVB on the oxidation behavior of silicide coating: (a1-c1) before oxidation, (a2-c2) after oxidation
[1] Zhang Y L, Wang Q, Li Q, et al. Research progress of high temperature protective coatings on molybdenum and molybdenum alloy [J]. Surf. Technol., 2023, 52(10): 48
(张亚龙, 王 茜, 李 倩 等. 钼及钼合金表面高温防护涂层的研究进展 [J]. 表面技术, 2023, 52(10): 48)
[2] He H R, Xu J Q, Miao X, et al. Preparation, modification and oxidation resistance of silicide coatings on Mo and Mo alloys substrates: A review [J]. Mater. Rep., 2019, 33: 3227
(何浩然, 许俊强, 苗 欣 等. 钼及钼合金表面硅化物涂层的制备、改性及抗氧化性能研究进展 [J]. 材料导报, 2019, 33: 3227)
[3] Fu M J, Zhang Y, Zhang G F, et al. Research progress of high temperature antioxidant modified silicide coatings of molybdenum and its alloys [J]. Mater. Rep., 2023, 37: 21030219
(符明君, 张 勇, 张耿飞 等. 钼及钼合金改性硅化物高温抗氧化涂层研究现状 [J]. 材料导报, 2023, 37: 21030219)
[4] Cheng P M, Yang C, Zhang P, et al. Enhancing the high-temperature creep properties of Mo alloys via nanosized La2O3 particle addition [J]. J. Mater. Sci. Technol., 2022, 130: 53
[5] Zheng L W, Liu E Z, Zheng Z, et al. Preparation of alumina/aluminide coatings on molybdenum metal substrates, and protection performance evaluation utilizing a DZ40M superalloy casting test [J]. Surf. Coat. Technol., 2020, 395: 125931
[6] Liu Z G, Li W, Fan J L, et al. High temperature oxidation behavior of MoSi2-Al2O3 composite coating on TZM alloy [J]. Ceram. Int., 2022, 48: 10911
[7] Fu T, Shen F Q, Zhang Y Y, et al. Oxidation protection of high-temperature coatings on the surface of Mo-based alloys—A review [J]. Coatings, 2022, 12: 141
[8] Cai Z Y, Liu S N, Xiao L R, et al. Oxidation behavior and microstructural evolution of a slurry sintered Si-Mo coating on Mo alloy at 1650 oC [J]. Surf. Coat. Technol., 2017, 324: 182
[9] Xiao L R, Xu X Q, Liu S N, et al. Oxidation behaviour and microstructure of a dense MoSi2 ceramic coating on Ta substrate prepared using a novel two-step process [J]. J. Eur. Ceram. Soc., 2020, 40: 3555
[10] Xiao L R, Shen H T, Zhang Y F, et al. Preparartion and microstructure of double-layer mosi2 coating molybdenum alloys [J]. Min. Metall. Eng., 2022, 42(5): 132
(肖来荣, 沈鸿泰, 张亚芳 等. 钼合金双层结构MoSi2涂层的制备与组织性能 [J]. 矿冶工程, 2022, 42(5): 132)
[11] Lei S Y. Study on structure control, oxidation resistance and thermal shock of MoSi2 coating on Nb alloy [D]. Guangzhou: South China University of Technology, 2023
(雷声远. 铌合金表面MoSi2涂层结构调控及抗氧化和热震性能研究 [D]. 广州: 华南理工大学, 2023)
[12] Tian X D, Guo X P, Sun Z P, et al. Effects of Y2O3/Y on Si-B Co-deposition coating prepared through HAPC method on pure molybdenum [J]. J. Rare Earths, 2016, 34: 952
[13] Yu B, Li Z, Zhou K X, et al. High-temperature performance of MoSi2 modified YGYZ thermal barrier coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 812
(宇 波, 李 彰, 周凯旋 等. MoSi2改性YGYZ作为陶瓷面层的多层热障涂层体系的抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 812)
[14] Zhang Y F, Zhou X J, Cheng H C, et al. Fabrication and oxidation resistance of a novel MoSi2-ZrB2-based coating on Mo-based alloy [J]. Materials, 2023, 16: 5634
[15] He M B, Ren W Y, Yang Y C, et al. Effect of doping phase on laser ablation resistance of ZrB2 ceramic coatings [J]. J. Appl. Opt., 2023, 44: 1177
(贺敏波, 任伟艳, 杨雨川 等. 掺杂相对ZrB2陶瓷涂层抗激光烧蚀性能的影响 [J]. 应用光学, 2023, 44: 1177)
[16] Guo L, Li Q W, Hou J T, et al. Study on the ZrB2-SiC antioxidation coating of molybdenum alloy surface [J]. China Molybden. Ind., 2018, 42(4): 43
(郭 磊, 李秦伟, 侯军涛 等. 钼合金表面ZrB2-SiC抗氧化涂层研究 [J]. 中国钼业, 2018, 42(4): 43)
[17] Duan Y T. Preparation and property study of ZrB2-SiC antioxidation coating [D]. Xi'an: Xi'an University of Architecture and Technology, 2023
(段宇婷. ZrB2-SiC防氧化涂层的制备与性能研究 [D]. 西安: 西安建筑科技大学, 2023)
[18] Kiryukhantsev-Korneev P V, Iatsyuk I V, Shvindina N V, et al. Comparative investigation of structure, mechanical properties, and oxidation resistance of Mo-Si-B and Mo-Al-Si-B coatings [J]. Corros. Sci., 2017, 123: 319
[19] Chen Z, Yuwen P, Wen S H, et al. First principles study on effect of B addition on oxidation resistance of MoSi2-based compound [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 224
(陈 郑, 宇文佩, 温思涵 等. B添加对MoSi2基化合物抗氧化性能影响的第一性原理研究 [J]. 中国腐蚀与防护学报, 2025, 45: 224)
[20] Chertova A D, Potanin A Y, Feng P, et al. The oxidation-resistant Mo30Si60B10 coating for protection of the T2 phase-based molybdenum alloy [J]. Open Ceram., 2024, 20: 100671
[21] Li P F, Fan J L, Cheng H C, et al. Preparation and formation mechanism of MoSi2 coating on molybdenum alloy [J]. J. Central South Univ. (Sci. Technol.), 2012, 43: 2506
(李鹏飞, 范景莲, 成会朝 等. 钼合金表面MoSi2涂层的制备工艺和形成机理 [J]. 中南大学学报(自然科学版), 2012, 43: 2506)
[22] Liu L, Lei H, Gong J, et al. Deposition and oxidation behaviour of molybdenum disilicide coating on Nb based alloys substrate by combined AIP/HAPC processes [J]. Ceram. Int., 2019, 45: 10525
[23] Huang Y, Zhai R X, Huang T H, et al. Comparative study on high-temperature oxidation behavior of MoSi2 and MoSi2/SiC-Mo2C composite coatings on Mo substrates at 1300 oC [J]. Surf. Coat. Technol., 2023, 458: 129359
[24] Sun J, Fu Q G, Guo L P. Influence of siliconizing on the oxidation behavior of plasma sprayed MoSi2 coating for niobium based alloy [J]. Intermetallics, 2016, 72: 9
[25] Fu Y, Huang C, Du C W, et al. Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding [J]. Corros. Sci., 2021, 191: 109727
[26] Fu T, Cui K K, Zhang Y Y, et al. Microstructure and oxidation behavior of anti-oxidation coatings on Mo-based alloys through HAPC process: A review [J]. Coatings, 2021, 11: 883
[27] Yu X H. Suppression of the “Pesting” effect of MoSi2 via doping of Si during magnetron sputtering [D]. Chongqing: Southwest University, 2022
(余修晗. 磁控溅射富Si态MoSi2抑制“PESTING”效应 [D]. 重庆: 西南大学, 2022)
[28] Tian D X, Zhao G, Wang D Z, et al. Microstructure and properties of multicomponent silicide ceramic coatings on Ta substrate prepared by slurry sintering method [J]. Ceram. Int., 2024, 50: 24725
[29] Jia Z H. High temperature oxidation resistant coatings for columbium alloy and molybdenumn alloy with slurry method [J]. Powder Metall. Technol., 2001, 19: 74
(贾中华. 料浆法制备铌合金和钼合金高温抗氧化涂层 [J]. 粉末冶金技术, 2001, 19: 74)
[30] Qiao Y Q, Zou L M, Zhang W P, et al. Preparation of a dense MoSi2 coating on Nb-Si based alloy with enhanced oxidation resistance via slurry sintering method [J]. Surf. Coat. Technol., 2024, 478: 130427
[31] Fan Y, Fan J L, Li W, et al. Microstructure and oxidation behavior of W-Si-ZrO2-Y2O3 high temperature oxidation resistant coating preparated by slurry spraying [J]. Mater. Sci. Eng. Powder Metall., 2016, 21: 754
(范 衍, 范景莲, 李 威 等. 料浆涂覆法制备W-Si-ZrO2-Y2O3高温抗氧化涂层的组织与高温氧化行为 [J]. 粉末冶金材料科学与工程, 2016, 21: 754)
[32] Useldinger R, Schleinkofer U. Creep behaviour of cemented carbides—Influence of binder content, binder composition and WC grain size [J]. Int. J. Refract. Met. Hard Mater., 2017, 62: 170
[33] Dong Y H, Yu Y H, Xing J, et al. Hydrophobic polyvinyl butyral/polytetrafluoroethylene composite coating on 5052 aluminum alloy: Preparation, characterization, and anticorrosive properties [J]. Prog. Organ. Coat., 2023, 182: 107640
[34] Hua J S, Liu M H, Zhao X L. Effect of PVB additions on properties of alcohol-based fly ash mold coating [J]. Found. Technol., 2010, 31: 1415
(华建社, 刘明华, 赵小龙. PVB加入量对醇基粉煤灰铸铁涂料性能的影响 [J]. 铸造技术, 2010, 31: 1415)
[35] Kang Y. Study on high temperature hechanical properties of ZrB2-SiC laminated high strength interface composite ceramics [J]. Ceramics, 2018, (2): 45
(康 永. ZrB2-SiC层状高强界面复合陶瓷材料高温力学性能研究 [J]. 陶瓷, 2018, (2): 45)
[36] Zhang D, Zhao Y, He Q, et al. Design of ZIF-8-based PVB composite coating on AZ31B Mg alloy surface with superhydrophobic, wear, corrosion protection and durability [J]. Eur. Polym. J., 2024, 219: 113393
[37] Xiao L R, Guo Y, Cai Z Y, et al. Fabrication and structure properties of Si-Cr-Ti-SiC-MnO2 coatings on molybdenum alloy [J]. Surf. Technol., 2017, 46(9): 66
(肖来荣, 郭 毅, 蔡圳阳 等. 钼合金Si-Cr-Ti-SiC-MnO2涂层的制备与组织性能 [J]. 表面技术, 2017, 46(9): 66)
[1] ZHUANG Zhaotao, YAN Haojie, XIE Bing, GUI Ye, SUN Qingqing, WU Liankui, CAO Fahe. High-temperature Oxidation Behavior of Liquid-phase Fluorination Treated Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1517-1527.
[2] DONG Ziye, WU Yiheng, LU Chong, SHEN Zhao, ZENG Xiaoqin. Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs)[J]. 中国腐蚀与防护学报, 2025, 45(1): 46-60.
[3] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[4] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[5] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[6] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[7] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[8] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[9] ZHAO Shilu ZHANG Jun LIU Changsheng. HIGH TEMPERATURE OXIDATION BEHAVIOR OF MULTI-COMPONENT (Ti, Al, Zr,Cr) N FILMS\par DEPOSITED BY MULTI-ARC ION PLATING[J]. 中国腐蚀与防护学报, 2009, 29(4): 296-300.
[10] ANG Dongsheng TIAN Zongjun CHEN Zhiyong SHEN Lida WU Hongyan ZHANG Pingze LIU . HIGH-TEMPERATURE OXIDATION RESISTANCE COATINGS ON TiAl ALLOY SURFACE[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
[11] ;. RECENT DEVELOPMENT OF PERFORMANCE VALUATION ON THERMAL BARRIER COATINGS[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[12] Yuefei Zhang. High Temperature Oxidation Resistance of the Plasma Titanizing on Copper Surface by Double Glow Discharge[J]. 中国腐蚀与防护学报, 2004, 24(3): 139-142 .
[13] Yujuan Zhang; Xiaofeng Sun; Tao Jin. 1050℃ ISOTHERMAL OXIDATION RESISTANCE OF TWO NiCrAlY COATINGS[J]. 中国腐蚀与防护学报, 2002, 22(6): 339-342 .
[14] Jianhong Ke. High Temperature Oxidation Behavior of Fe3Al-Based Alloys[J]. 中国腐蚀与防护学报, 2000, 20(1): 22-28 .
[15] DENG Jianxin AI Xing DING Zeliang (Department of Mechanical Engineering; Shandong University of Technology; Jinan 250061). OXIDATION BEHAVIOR OF Al_2O_3/TiB_2/SiC_w CERAMICCOMPOSITES[J]. 中国腐蚀与防护学报, 1997, 17(2): 152-156.
No Suggested Reading articles found!