Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1589-1598    DOI: 10.11902/1005.4537.2025.011
Current Issue | Archive | Adv Search |
Effect of Corrosion Morphology on Electrochemical Impedance Spectroscopy Characteristics of Mg-alloy
XU Shiyuan1, MENG Xin2, YANG Yazhang1, LIU Chen1, ZHANG Zhao3, FANG Xiaozu1()
1 Ningbo branch of Chinese Academy of Ordnance Science, Ningbo 315000, China
2 Chongqing Tiema Industrial Group Co. Ltd. , Chongqing 400000, China
3 Department of Chemistry, Zhejiang University, Hangzhou 310000, China
Cite this article: 

XU Shiyuan, MENG Xin, YANG Yazhang, LIU Chen, ZHANG Zhao, FANG Xiaozu. Effect of Corrosion Morphology on Electrochemical Impedance Spectroscopy Characteristics of Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1589-1598.

Download:  HTML  PDF(18614KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to investigate the formation mechanism of dual inductive loops in electrochemical impedance spectroscopy (EIS) of Mg-alloy, the corrosion behavior in 3.5% (mass fraction) NaCl solution of pure Mg (exhibiting uniform corrosion) and AZ31 Mg-alloy (predominantly undergoing localized corrosion) was comparatively assessed. After immersion in 3.5% (mass fraction) NaCl solution for 24 h, the EIS test results revealed that the pure Mg did not exhibit dual inductive loops. However, the dual inductive loops can be observed for AZ31 Mg-alloy. Morphological analysis further demonstrated that the pure Mg did experience uniform corrosion. However, AZ31 Mg-alloy suffered from both filiform corrosion and pitting corrosion. The different propagation mechanism of filiform corrosion and pitting corrosion led to the formation of non-uniform corrosion morphology. The test results of EIS and corrosion morphology established that the formation of double induction loops for AZ31 Mg-alloy is related to the non-uniform corrosion morphology.

Key words:  Mg-alloys      corrosion      EIS      corrosion morphology     
Received:  06 January 2025      32134.14.1005.4537.2025.011
ZTFLH:  T146.2  
Fund: Ningbo Youth Science and Technology Innovation Leading Talents Project(2024QL010);China Innovation Challenge (Ningbo) Major Project(2023T001)
Corresponding Authors:  FANG Xiaozu, E-mail: nbbkycorrosion2024@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.011     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1589

SamplesAlZnMnFeNiCuMg
Pure Mg0.00250.000710.000410.00820.000130.00012Bal.
AZ31 Mg-alloy3.280.950.840.0140.00230.00021Bal.
Table 1  Composition of the pure Mg and AZ31 Mg-alloy for experiments
Fig.1  Backscattering photographs of pure Mg and AZ31 Mg-alloy samples: (a, b) pure Mg samples, (b) morphology with high magnification of region 1, (c) AZ31 Mg-alloy samples, (d) morphology with high magnification of region 2
AreasMgAlMnZn
A97.12.3-0.6
B25.147.727.2-
C12.756.530.50.3
Table 2  EDS results of different areas of AZ31 Mg-alloy
Fig.2  EIS results of pure Mg and AZ31 Mg-alloy samples after immersion in 3.5%NaCl solution for 24 h: (a) Nyquist plot of pure Mg samples, (b) Nyquist plot of AZ31 Mg-alloy samples, (c) frequency-phase angle plot, (d) frequency-modulus plot
Fig.3  Optical photos of pure Mg and AZ31 Mg-alloy samples after immersion in 3.5%NaCl solution for 24 h: (a) pure Mg sample, (b) AZ31 Mg-alloy sample
Fig.4  SEM of the corrosion morphology of pure Mg-alloy: (a) surface film morphology, (b) the morphology with high magnification of region 3, (c) matrix morphology after corrosion products removed, (d) the morphology with high magnification of region 4
Fig.5  Corrosion morphology of AZ31 Mg-alloy samples after removal of corrosion products: (a) 3D morphology, (b, c) SEM of pitting corrosion area, (d, e) SEM of filiform corrosion area
Fig.6  Cross section of AZ31 Mg-alloy sample after immersion in 3.5%NaCl solution for 24 h: (a) SEM of filiform corrosion area, (b) SEM of pitting corrosion area
RegionMgO
D82.317.7
E72.028.0
F69.730.3
Table 3  EDS test results of corrosion products of pure magnesium and AZ31 Mg-alloy samples
Fig.7  XRD pattern results of pure Mg and AZ31 Mg-alloy corrosion products
Fig.8  Equivalent circuits of pure Mg samples (a) and AZ31 Mg-alloy samples (b)
Fig.9  SEM of corrosion morphology of AZ31 Mg-alloy samples after 10 min immersion: (a) AZ31 Mg-alloy samples after removal of corrosion products, (b) the morphology with high magnification of region 5, (c) the morphology with high magnification of region 6
Fig.10  SEM of corrosion morphology of AZ31 Mg-alloy samples after 30 min immersion: (a) AZ31 Mg-alloy samples after removal of corrosion products, (b) the morphology with high magnification of region 7, (c) the morphology with high magnification of region 8
Fig.11  Schematic diagram of the AZ31 Mg-alloy corrosion process
[1] Mordike B L, Ebert T. Magnesium: Properties-applications-potential [J]. Mater. Sci. Eng., 2001, 302A: 37
[2] Abbott T B. Magnesium: Industrial and research developments over the last 15 years [J]. Corrosion, 2015, 71: 120
[3] Nie Y J, Dai J W, Li X, et al. Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures [J]. J. Magnesium Alloys, 2021, 9: 1123
[4] Atrens A, Song G L, Cao F Y, et al. Advances in Mg corrosion and research suggestions [J]. J. Magnesium Alloys, 2013, 1: 177
[5] Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
[6] Gabrielli C. Once upon a time there was EIS [J]. Electrochim. Acta, 2020, 331: 135324
[7] Pardo A, Feliu S, Merino M C, et al. Electrochemical estimation of the corrosion rate of magnesium/aluminium alloys [J]. Int. J. Corros., 2010, 2010: 953850
[8] Bland L G, King A D, Birbilis N, et al. Assessing the corrosion of commercially pure magnesium and commercial AZ31B by electrochemical impedance, mass-loss, hydrogen collection, and inductively coupled plasma optical emission spectrometry solution analysis [J]. Corrosion, 2015, 71: 128
[9] Song G L, Atrens A, Wu X L, et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride [J]. Corros. Sci., 1998, 40: 1769
[10] Song G L, Bowles A L, StJohn D H. Corrosion resistance of aged die cast magnesium alloy AZ91D [J]. Mater. Sci. Eng., 2004, 366A: 74
[11] Song G L. Effect of tin modification on corrosion of AM70 magnesium alloy [J]. Corros. Sci., 2009, 51: 2063
[12] Liu M, Schmutz P, Uggowitzer P J, et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys [J]. Corros. Sci., 2010, 52: 3687
[13] Acharya M G, Shetty A N. The corrosion behavior of AZ31 alloy in chloride and sulfate media-a comparative study through electrochemical investigations [J]. J. Magnes. Alloy., 2019, 7: 98
[14] Yamasaki M, Shi Z, Atrens A, et al. Influence of crystallographic orientation and Al alloying on the corrosion behaviour of extruded α-Mg/LPSO two-phase Mg-Zn-Y alloys with multimodal microstructure [J]. Corros. Sci., 2022, 200: 110237
[15] Cao F Y, Zheng D J, Song G L, et al. The corrosion behavior of Mg5Y in nominally distilled water [J]. Adv. Eng. Mater., 2018, 20: 1700986
[16] Medhashree H, Shetty A N. Electrochemical corrosion study of Mg-Al-Zn-Mn alloy in aqueous ethylene glycol containing chloride ions [J]. J. Mater. Res. Technol., 2017, 6: 40
[17] Bland L G, Scully L C, Scully J R. Assessing the corrosion of multi-phase Mg-Al alloys with high Al content by electrochemical impedance, mass loss, hydrogen collection, and inductively coupled plasma optical emission spectrometry solution analysis [J]. Corrosion, 2017, 73: 526
[18] Liu J H, Song Y W, Shan D Y, et al. Different microgalvanic corrosion behavior of cast and extruded EW75 Mg alloys [J]. J. Electrochem. Soc., 2016, 163: C856
[19] Benbouzid A Z, Gomes M P, Costa I, et al. A new look on the corrosion mechanism of magnesium: An EIS investigation at different pH [J]. Corros. Sci., 2022, 205: 110463
[20] Li J R, Jiang Q T, Sun H Y, et al. Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5wt.% sodium chloride solution [J]. Corros. Sci., 2016, 111: 288
[21] Li J R, Zhang B B, Wei Q Y, et al. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5wt.%NaCl solution [J]. Electrochim. Acta, 2017, 238: 156
[22] Zhang T, Meng G Z, Shao Y W, et al. Corrosion of hot extrusion AZ91 magnesium alloy. Part II: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy [J]. Corros. Sci., 2011, 53: 2934
[23] Cao F Y, Shi Z M, Song G L, et al. Influence of casting porosity on the corrosion behaviour of Mg0.1Si [J]. Corros. Sci., 2015, 94: 255
[24] Shi Z M, Cao F Y, Song G L, et al. Corrosion behaviour in salt spray and in 3.5%NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-RE alloys: RE = Ce, La, Nd, Y, Gd [J]. Corros. Sci., 2013, 76: 98
[25] Xu H, Zhang X, Zhang K, et al. Effect of extrusion on corrosion behavior and corrosion mechanism of Mg-Y alloy [J]. J. Rare Earths, 2016, 34: 315
[26] Li B J, Sun J P, Xu B Q, et al. Corrosion behavior of Mg-5.7Gd-1.9Ag Mg alloy sheet [J]. J. Alloy. Compd., 2022, 915: 165241
[27] Chen Z, Li H Z, Liang X P, et al. In-situ observation on filiform corrosion propagation and its dependence on Zr distribution in Mg alloy WE43 [J]. J. Magnes. Alloy., 2023, 11: 4282
[28] Xu S Y, Jiang S N, Chen Z Y, et al. Influence of corrosion morphology on inductive impedance of Mg-Gd-Y-Zn-Zr-Ag alloy [J]. J. Mater. Eng. Perform., 2021, 30: 4126
[29] Xu S Y, Liu C M, Gao Y H, et al. Influence of long-period stacked ordered phases on inductive impedance of Mg-Gd-Y-Zn-Zr-Ag alloys [J]. Materials (Basel), 2023, 16: 640
[30] Zeng R C, Hu Y, Guan S K, et al. Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution [J]. Corros. Sci., 2014, 86: 171
[31] Aung N N, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy [J]. Corros. Sci., 2010, 52: 589
[32] Ben Hamu G, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J]. J. Alloy. Compd., 2009, 468: 222
[33] Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
[34] Mingo B, Arrabal R, Mohedano M, et al. Enhanced corrosion resistance of AZ91 alloy produced by semisolid metal processing [J]. J. Electrochem. Soc., 2015, 162: C180
[1] LI Weihua, LI Zhong, ZHANG Danni, XU Dake. Microbial-induced Mineralization for Inhibiting Metal Corrosion: Mechanism, Design Strategies and Prospects[J]. 中国腐蚀与防护学报, 2025, 45(6): 1459-1473.
[2] CHEN Yu, WEI Gaofei, DENG Shuduan, LI Xianghong. Research Progress and Prospects of Carbon Dots as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2025, 45(6): 1474-1492.
[3] LIU Jianyang, HAN Yang, YU Meiyan, WANG Wei. Recent Advances in Light-responsive Multifunctional Self-healing Coatings[J]. 中国腐蚀与防护学报, 2025, 45(6): 1493-1507.
[4] LIU Ming, FENG Fuhai, TANG Yufei. Research Progress on Environmentally Friendly Composite De-icing Agents[J]. 中国腐蚀与防护学报, 2025, 45(6): 1508-1516.
[5] YE Jun, LUO Xin, ZHEN Xiansheng, LI Xinping, XIE Yun, PENG Xiao. Corrosion Behavior of Inconel 718 Alloy Without and with a Pre-deposits Film of Salts Mixture at 750 oC in Different Atmospheres[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[6] LI Zhaonan, HOU Yucen, JU Peng, ZHUANG Tiegang, CHEN Jingjie, WANG Mingyu, XU Yunze. Influence of Simulated Electrolyte Droplets with Varied Conductivity on Atmospheric Corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1537-1548.
[7] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[8] ZHOU Hongtao, WANG Linlin, WANG Min, WANG Ping, MA Yingche. Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic[J]. 中国腐蚀与防护学报, 2025, 45(6): 1563-1574.
[9] WANG Lifang, SHANG Mengchao, GAO Xiyu, LIU Guichang, SUN Wen. Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[10] PENG Wang, CHEN Jian, YANG Lingxu, LIU Huijun, LIANG Jianping, ZENG Chaoliu. Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
[11] LI Yuqing, ZHANG Tiezhi, HUANG Xinglin, SUN Zhenmei, ZHANG Yi, YIN Yansheng. Effect of Marinilactibacillus Piezotolerans on Corrosion Behavior of 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[12] WU Chunsheng, ZHANG Tianyong, LI Bin, YUAN Wenying, ZHANG Xiaoou, JIANG Shuang, WANG Huaiyuan. Corrosion Inhibition Performance of Triazine-derived Quaternary Ammonium Salts for Q235 Carbon Steel in High Temperature and High Pressure CO2 Containing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(6): 1639-1648.
[13] DENG Yan, PENG Zipiao, LIU Yichao, ZHONG Xiankang. Preparation and Antimicrobial Properties of a Novel Cu-containing Ti-alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
[14] SUN Shibin, GAO Hao, CHANG Xueting, WANG Dongsheng. Failure Behavior of Fine-grained FH40 Marine Low-temperature Steel in Conditions of Coupling Effect of Seawater-sea Ice[J]. 中国腐蚀与防护学报, 2025, 45(6): 1659-1668.
[15] LI Zanlong, YAN Qing, MAN Cheng. Effect of Pressure Load and Friction Frequency on Wear Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1669-1678.
No Suggested Reading articles found!