Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1563-1574    DOI: 10.11902/1005.4537.2025.058
Current Issue | Archive | Adv Search |
Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic
ZHOU Hongtao1,2, WANG Linlin1, WANG Min2,3(), WANG Ping1, MA Yingche2,3
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Key Laboratory of Nuclear Materials and Safety Evaluation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHOU Hongtao, WANG Linlin, WANG Min, WANG Ping, MA Yingche. Influence of Al-content on Corrosion Resistance of Alumina-forming Austinite Steel in Molten Pb-Bi Alloy Eutectic. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1563-1574.

Download:  HTML  PDF(39449KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To enhance the corrosion resistance of austenitic stainless steel in molten Pb-Bi alloy eutectic, herein, hot-rolled plates of alumina-forming austinite (AFA) steels with varying Al contents (3.5%-4.5%, mass fraction) are made and pre-oxidized in air at 800 oC for 20 h. Then their corrosion performance was comparatively assessed in oxygen-saturated Pb-Bi alloy eutectic at 600 oC up to 10,000 h via static immersion test, surface and cross-sectional morphology observations, along with compositional analysis of the formed oxide scales. Results demonstrate that the corrosion resistance to molten Pb-Bi alloy eutectic of AFA steel increases with the increasing Al content, especially, the steel with 4.5%Al exhibits superior corrosion resistance with a damage area ratio less than 20% for its pre-formed Al2O3 scale. In fact, this phenomenon may be ascribed to that during the long-term corrosion process, due to the existence of weak local spots within the pre-formed Al2O3 scale, where micro-defects will be generated, at the same time, the NbC particles on the surface may be oxidized to Nb2O5, which can further induce microcracks in the surrounding Al2O3 film. These provides a rapid pathway for the inter-diffusion of alloying elements and O, leading to localized internal oxidation and causing the pre-formed Al2O3 scale to be damaged. The findings reveal the critical mechanisms governing long-term corrosion performance of the pre-oxidized AFA steels in molten Pb-Bi alloy eutectic cooled nuclear systems.

Key words:  AFA steel      Al2O3      corrosion resistance      Al content     
Received:  20 February 2025      32134.14.1005.4537.2025.058
ZTFLH:  TG178  
Fund: CNNC 2023 Young Talents Research Project and Strategic Pilot Project of Chinese Academy of Sciences(XDA041030101)
Corresponding Authors:  WANG Min, E-mail: minwang@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.058     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1563

AlloyFeCrNiAlNb + Ti + VMnMoSiC
Q1Bal.15.9724.903.480.621.422.040.110.057
Q2Bal.15.9825.003.960.6271.422.070.110.056
Q3Bal.15.9624.904.480.6291.412.080.110.056
Table 1  Chemical composition of AFA steel with different Al content
Fig.1  EBSD grain orientation distribution maps of AFA steel with different Al content after solution treatment at 1250 oC: (a) Q1, (b) Q2, (c) Q3
Fig.2  SEM image of the oxide film on the surface of AFA steel with different Al content after pre-oxidation: (a, d) Q1, (b, e) Q2, (c, f) Q3
Fig.3  EDS images of cross-section oxide films of AFA steel with different Al content after pre-oxidation: (a) Q1, (b) Q2, (c) Q3
Fig.4  GIXRD patterns of AFA steel with different Al content under static saturated oxygen LBE environment at 600 ℃ for 1000 (a) and 10,000 h (b) of corrosion
Fig.5  SEM images of AFA steel with different Al content after corrosion for 1000 (a-c) and 10000 h (d-i) under static saturated oxygen LBE environment at 600 oC: (a, d, g) Q1, (b, e, h) Q2, (c, f, i) Q3
ElementsOCrFeNiAlMnMoNbPbBi
Point 145.240.1743.619.560.230.520.12-0.55-
Point 238.840.2229.071.410.060.27--30.110.03
Point 321.8012.5234.5213.2215.131.110.79-0.91-
Table 2  Results of EDS composition analysis of oxidation products on alloy surface in Fig.5i
Fig.6  OM images of cross sections of AFA steels with different Al content after corrosion for 1000 (a-c), 3000 (d-f) and 10000 h (g-i) in a static saturated oxygen LBE environment at 600 oC: (a, d, g) Q1, (b, e, h) Q2, (c, f, i) Q3
Fig.7  Relationship between the coating ratio of oxide nodules on AFA steel with different Al content and corrosion time in static saturated oxygen LBE environment at 600 oC
Fig.8  SEM images of AFA steel with different Al content after corrosion for 1000 (a-c), 3000 (d-f) and 10000 h (g-i) under static saturated oxygen LBE environment at 600 oC: (a, d, g) Q1, (b, e, h) Q2, (c, f, i) Q3
Fig.9  Relationship between oxide thickness and corrosion time of AFA steel with different Al content in static saturated oxygen LBE environment at 600 oC
Fig.10  The EDS images of the intact regions of AFA steel with different Al content after 1000 h of corrosion in a static oxygen-saturated LBE environment at 600 oC: (a, d) Q1, (b, e) Q2, (c, f) Q3
Fig.11  Cross-sectional EPMA images and corresponding elemental distribution of oxidation zones of AFA steel with different Al content after 3000 h of corrosion in a static oxygen-saturated LBE environment at 600 oC: (a) Q1, (b) Q2, (c) Q3
Fig.12  EDS image of oxidation zone cross-section of Q2 alloy after 10000 h corrosion in static saturated oxygen LBE environment at 600 oC: (a) elemental mapping, (b, c) line scan corresponding to Fig.12a
Fig.13  Schematic diagram of oxidation corrosion mechanism of alloy in static saturated oxygen LBE environment at 600 oC: (a) short-term corrosion, (b) intermediate corrosion, (c) long-term corrosion
[1] Wu Y C, Team FDS. The prospect of lead-based reactors in the fourth generation nuclear power system [J]. Sci. Technol. Rev., 2015, 33(14): 12, 3
(吴宜灿, FDS团队. 第四代核能系统铅基反应堆前景展望 [J]. 科技导报, 2015, 33(14): 12, 3)
[2] Wang G F, Liu H, Wang D D, et al. High-quality energy development and energy security under the new situation for China [J]. Bulletin of Chinese Academy of Sciences, 2023, 38: 23
(王国法, 刘 合, 王丹丹 等. 新形势下我国能源高质量发展与能源安全 [J]. 中国科学院院刊, 2023, 38: 23)
[3] Alemberti A, Smirnov V, Smith C F, et al. Overview of lead-cooled fast reactor activities [J]. Prog. Nucl. Energ., 2014, 77: 300
[4] Jiang H Y, Zhao X Y, Cao S, et al. Effect of Y2O3 addition on the microstructure and liquid LBE cavitation erosion behaviors of Fe-Cr-Al-Ti-C-xY2O3 laser clade coatings [J]. J. Nucl. Mater., 2022, 572: 154030
[5] Schroer C, Wedemeyer O, Novotny J, et al. Selective leaching of nickel and chromium from Type 316 austenitic steel in oxygen-containing lead-bismuth eutectic (LBE) [J]. Corros. Sci., 2014, 84: 113
[6] Wang J M, Arjmand F, Du D H, et al. Electrochemical corrosion behaviors of 316 L stainless steel used in PWR primary pipes [J]. Chin. J. Eng., 2017, 39: 1355
(汪家梅, Arjmand F, 杜东海 等. 压水堆一回路主管道316L不锈钢的电化学腐蚀行为 [J]. 工程科学学报, 2017, 39: 1355)
[7] Zhu Z G, Zhang Q, Tan J B, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550 oC: Effects of exposure time and dissolved oxygen concentration [J]. Corros. Sci., 2022, 204: 110405
[8] Lambrinou K, Koch V, Coen G, et al. Corrosion scales on various steels after exposure to liquid lead-bismuth eutectic [J]. J. Nucl. Mater., 2014, 450: 244
[9] Zhao X, Chen Y X, Zeng X, et al. Heat-treatment optimization and heavy liquid metal compatibility of Si-enriched F/M steel for LFR structure application [J]. Chin. J. Eng., 2020, 42: 1488
(赵 熹, 陈映雪, 曾 献 等. 一种铅基快堆用高硅不锈钢的热处理工艺优化及铅铋相容性研究 [J]. 工程科学学报, 2020, 42: 1488)
[10] Chen L Z, He Y J, Fu X G, et al. Research progress on the corrosion resistance of alumina forming austenitic steel in lead-based liquid metals [J]. Mater. Rep., 2023, 37(): 421
(陈灵芝, 和雅洁, 付晓刚 等. 新型含铝奥氏体合金的耐铅基液态金属腐蚀性能研究进展 [J]. 材料导报, 2023, 37(): 421)
[11] Zhao R L, Jia H D, Cao S G, et al. Microstructure and mechanical properties of 15Ni-15Cr oxide dispersion strengthened austenitic steel [J]. Chin. J. Eng., 2023, 45: 107
(赵瑞林, 贾皓东, 曹书光 等. 15Ni-15Cr ODS钢的微观结构与力学性能 [J]. 工程科学学报, 2023, 45: 107)
[12] Zhang J S. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci., 2009, 51: 1207
[13] Zhang J S, Li N. Review of the studies on fundamental issues in LBE corrosion [J]. J. Nucl. Mater., 2008, 373: 351
[14] Klok O, Lambrinou K, Gavrilov S, et al. Effect of deformation twinning on dissolution corrosion of 316L stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 oC [J]. J. Nucl. Mater., 2018, 510: 556
[15] Heinzel A, Weisenburger A, Müller G. Corrosion behavior of austenitic steels in liquid lead bismuth containing 10-6 wt.% and 10-8 wt.% oxygen at 400-500 oC [J]. J. Nucl. Mater., 2014, 448: 163
[16] Zhang X Y, Li C, Wang Y X, et al. Research progress on liquid metal corrosion behavior of structural steels for lead fast reactor [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1216
(张心怡, 李 聪, 汪禹熙 等. 铅基堆结构材料液态金属腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1216)
[17] Shi X M, Tan J B, Zhang Z Y, et al. A review on fatigue behavior of candidate structure materials for lead-cooled fast reactors in liquid lead-bismuth eutectic [J]. J. Chin. Soc. Corros. Prot., 2025, 45 (5): 1187
(史轩铭, 谭季波, 张兹瑜 等. 铅冷快堆候选结构材料液态铅铋共晶环境中疲劳行为研究进展 [J]. 中国腐蚀与防护学报, 2025, 45 (5): 1187)
[18] Tsisar V, Schroer C, Wedemeyer O, et al. Long-term corrosion of austenitic steels in flowing LBE at 400 oC and 10-7 mass% dissolved oxygen in comparison with 450 and 550 oC [J]. J. Nucl. Mater., 2016, 468: 305
[19] Barbier F, Benamati G, Fazio C, et al. Compatibility tests of steels in flowing liquid lead-bismuth [J]. J. Nucl. Mater., 2001, 295: 149
[20] Tsisar V, Schroer C, Wedemeyer O, et al. Corrosion behavior of austenitic steels 1.4970, 316L and 1.4571 in flowing LBE at 450 and 550 oC with 10-7 mass% dissolved oxygen [J]. J. Nucl. Mater., 2014, 454: 332
[21] Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316: 433
[22] Brady M P, Yamamoto Y, Santella M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use [J]. JOM, 2008, 60: 12
[23] Tsisar V, Stergar E, Gavrilov S, et al. Effect of variation in oxygen concentration in static Pb-Bi eutectic on long-term corrosion performance of Al-alloyed austenitic steels at 500 oC [J]. Corros. Sci., 2022, 195: 109963
[24] Shen L, Cao G Q, Lang D, et al. Fe-14Ni-14Cr-2.5Al steel showing excellent corrosion-resistance in flowing LBE at 550 oC and high temperature strength [J]. J. Nucl. Mater., 2023, 587: 154703
[25] Gao Q Z, Liu Z Y, Li H J, et al. High-temperature oxidation behavior of modified 4Al alumina-forming austenitic steel: Effect of cold rolling [J]. J. Mater. Sci. Technol., 2021, 68: 91
[26] Wu Y, Xie A, Chen S H, et al. Corrosion behavior of NbC and its effect on corrosion layer formation in liquid lead-bismuth eutectic of Nb-containing austenitic stainless steel [J]. Acta Metall. Sin., 2025, 61: 287
(吴 炀, 谢 昂, 陈胜虎 等. 含Nb奥氏体不锈钢中NbC的液态Pb-Bi共晶腐蚀行为及其对氧化层形成的影响 [J]. 金属学报, 2025, 61: 287)
[27] Xu G F, Li Y, Lei Y C, et al. Effect of relative flow velocity on corrosion behavior of high nitrogen austenitic stainless steel in liquid lead-bismuth eutectic alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 899
(徐桂芳, 李 园, 雷玉成 等. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 899)
[28] Zhu Z G, Tan J B, Wu X Q, et al. Corrosion behaviors of FeCrAl alloys exposed to oxygen-saturated static lead bismuth eutectic at 550 oC [J]. Corros. Sci., 2022, 209: 110767
[29] Martinelli L, Balbaud-Célérier F, Terlain A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470 oC (Part II) [J]. Corros. Sci., 2008, 50: 2537
[30] Popovic M P, Chen K, Shen H, et al. A study of deformation and strain induced in bulk by the oxide layers formation on a Fe-Cr-Al alloy in high-temperature liquid Pb-Bi eutectic [J]. Acta Mater., 2018, 151: 301
[31] Gong X, Short M P, Auger T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors [J]. Prog. Mater. Sci., 2022, 126: 100920
[1] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[2] WANG Lifang, SHANG Mengchao, GAO Xiyu, LIU Guichang, SUN Wen. Effect of Inherent Films Resulted from Manufacturing Process on Corrosion of B30 Cu-Ni Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[3] HUANG Zebang, LIU Guangming, FAN Wenxue, XU Ruizhong, ZHU Yanbin, LIU Chenhui. Effect of Passivation Time on Corrosion Resistance of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[4] HE Yan, LIU Yan, TIAN Hua, CHEN Ye. Effect of Low Temperature Diffusion Pretreatment on Precipitation of Phases During Post-aging Treatment for B-containing S31254 Super Austenitic Stainless Steel and its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2025, 45(6): 1773-1778.
[5] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Joints[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[6] GUO Yaowei, AI Shimin, FANG Daran, LIN Xiaoping, YANG Lianwei, ZHENG Zhehao. Microstructure and Corrosion Resistance of High-pressure Solidified Mg-xAl (x = 3, 5, 7, 9, 12) Alloys[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[7] FENG Yuqin, GUO Tonghan, YU Weihan, WU Wei, ZHANG Daquan. Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[8] LI Ping, SHI Huijie, PEI Jibin, WANG Zijian, CAO Tieshan, CHENG Congqian, ZHAO Jie. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[9] ZHANG Xiongbin, DANG En, YU Xiaojing, TANG Yufei, ZHAO Kang. Research Status and Progress on Corrosion Performance of Super Martensitic Stainless Steel for Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[10] ZHOU Qianyong, LAI Yang, LI Qian. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[11] LI Mao, DENG Ke, CHEN Yanxiang, LIU Zhonghao, LI Shang, GUO Yuting, DONG Xuanpu, CAO Huatang. Influence of N2 Flow and Target-substrate Distance on Microstructure and Corrosion Resistance Properties of Multi-arc Ion Plated AlSiN Nano-composite Coatings[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[12] CHEN Yuqiang, RAN Guanglin, LU Dingding, HUANG Lei, ZENG Liying, LIU Yang, ZHI Qian. Effect of Cyclic Strengthening on Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[13] RAN Renhao, SHAN Huilin, ZHANG Pengjie, WANG Dongmei, SI Jiajia, XU Guangqing, LV Jun. Preparation and Corrosion Resistance of Surface Mg-alloying NdFeB Magnets[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[14] YUE Rui, LIU Yongyong, YANG Lijing, ZHU Xinglong, CHEN Quanxin, A Naer, ZHANG Qingke, SONG Zhenlun. Effect of Laser Surface Remelting on Microstructure and Properties of Biodegradable Zn-0.4Mn Alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[15] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
No Suggested Reading articles found!