Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (4): 681-686    DOI: 10.11902/1005.4537.2021.155
Current Issue | Archive | Adv Search |
High Temperature Corrosion Behavior of Sanicro 25 Steel in High-sulfur Coal Ash/simulated Flue Gas
GUAN Yu1, LIU Guangming1(), ZHANG Minqiang2, LIU Huanhuan1, LIU Zhihao1, GONG Bingbing1
1.School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.Dongfang Boiler Group Co. Ltd., Material Research Institute, Zigong 643001, China
Download:  HTML  PDF(3852KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The high temperature corrosion behavior of Sanicro 25 steel beneath deposition of artificial high-sulfur coal ash in an simulated boiler atmosphere was studied at 650 and 700 ℃ for 2000 h. Meanwhile, samples were taken out at certain intervals, cleaned and weighed, to obtain corrosion kinetics data. Further, the microstructure, element distribution and phase composition of the corrosion products were characterized by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results indicate that the corrosion rate of Sanicro 25 steel accelerated with the increasing temperature. A relative complete and dense protective oxide scale was formed on the surface of the alloy at 650 ℃, thus the alloy had good corrosion resistance. The corrosion products were composed mainly of Cr2O3 and Fe2O3. A certain degree of hot corrosion occurred at 700 ℃. The corrosion process could be divided into high temperature oxidation stage and molten sulfate accelerated corrosion stage, the later stage corresponds to molten salts induced destroy of the oxide scale, while a number of corrosion products peeled off and the alloy had obvious mass loss.

Key words:  Sanicro 25 steel      high temperature corrosion      high-sulfur coal      sulfate     
Received:  06 July 2021     
ZTFLH:  TG174  
Fund: National Natural Science Fundation of China(51961028)
Corresponding Authors:  LIU Guangming     E-mail:  gemliu@126.com
About author:  LIU Guangming, E-mail: gemliu@126.com

Cite this article: 

GUAN Yu, LIU Guangming, ZHANG Minqiang, LIU Huanhuan, LIU Zhihao, GONG Bingbing. High Temperature Corrosion Behavior of Sanicro 25 Steel in High-sulfur Coal Ash/simulated Flue Gas. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 681-686.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.155     OR     https://www.jcscp.org/EN/Y2022/V42/I4/681

Fig.1  Corrosion kinetic curves of Sanicro 25 steel in high-sulfur coal ash/simulated flue gas environment
Fig.2  Macroscopic surface morphologies of Sanicro 25 steel after 2000 h exposure at 650 ℃ (a) and 700 ℃ (b)
Fig.3  XRD patterns of the corrosion products formed on Sanicro 25 steel after 2000 h exposure in high-sulfur coal ash/simulated flue gas
Fig.4  Surface morphologies of Sanicro 25 steel after 2000 h exposure in high-sulfur coal ash/simulated flue gas at 650 ℃ (a) and 700 ℃ (b) and corresponding EDS results of the points 1-3 in Fig.4a and points 4, 5 in Fig.4b
Fig.5  Cross-sectional micrographs of Sanicro 25 steel after 2000 h exposure in high-sulfur coal ash/simulated flue gas at 650 ℃ (a) and 700 ℃ (b) and corresponding EDS results of the points 1-5 in Fig.5a and points 6-10 in Fig.5b
1 Liu L L. Analysis on the influencing factors of China's carbon market under the background of carbon neutralization [J]. Energy, 2021, (6): 67
刘兰兰. 碳中和背景下我国碳市场影响因素分析 [J]. 能源, 2021, (6): 67
2 China Electricity Council. China Electric Power Industry Annual Development Report 2019 [M]. Beijing: China Electric Power Press, 2021: 120
中国电力企业联合会. 2021年中国电力行业年度发展报告 [M]. 北京: 中国电力出版社, 2021: 120
3 Wang Q, Wang W L, Liu M, et al. Development and prospect of (ultra) supercritical coal-fired power generation technology [J]. Therm. Power Gen., 2021, 50(2): 1
王倩, 王卫良, 刘敏 等. 超 (超) 临界燃煤发电技术发展与展望 [J]. 热力发电, 2021, 50(2): 1
4 Liu R W, Xiao P, Zhong L, et al. Research progress of advanced 700 ℃ ultra-supercritical coal-fired power generation technology [J]. Therm Power Gen., 2017, 46(9): 1
刘入维, 肖平, 钟犁 等. 700 ℃超超临界燃煤发电技术研究现状 [J]. 热力发电, 2017, 46(9): 1
5 Mao J X. Latest development of high-temperature metallic materials in 700 ℃ ultra-supercritical units [J]. Elect. Power Const., 2013, 34(8): 69
毛健雄. 700 ℃超超临界机组高温材料研发的最新进展 [J]. 电力建设, 2013, 34(8): 69
6 Xie X S, Ai Z Q, Chi C Y, et al. R & D of the new type SP2215 austenitic heat-resistant steel for servicing 620~650 ℃ boiler super heater/reheater [J]. Steel Pipe, 2018, 47(1): 23
谢锡善, 艾卓群, 迟成宇 等. 620~650 ℃锅炉过热器/再热器用新型奥氏体耐热钢SP2215的研发 [J]. 钢管, 2018, 47(1): 23
7 Zhang X, Cai W H, Du S M, et al. Research situation and application prospect of Sanicro 25 heat-resistant steel [J]. Mater. Mech. Eng., 2019, 43(1): 1
张新, 蔡文河, 杜双明 等. Sanicro 25耐热钢的研究现状及应用前景 [J]. 机械工程材料, 2019, 43(1): 1
8 Zhang M Q, Huang L Q, Liu G M, et al. High temperature corrosion behavior of S30432 in different coal ash/flue gas [J]. Surf. Technol., 2018, 47(8): 251
张民强, 黄丽琴, 刘光明 等. S30432在不同煤灰/烟气环境中的高温腐蚀行为研究 [J]. 表面技术, 2018, 47(8): 251
9 Li P, Qin P, Pang S J, et al. Study on corrosion behavior of Super304H steel in simulated furnace atmosphere [J]. Trans. Mate. Heat Treat., 2015, 36(10): 210
李萍, 秦鹏, 庞胜娇 等. Super304H在模拟烟气环境下的腐蚀行为 [J]. 材料热处理学报, 2015, 36(10): 210
10 Zhao S Q, Xie X S. High temperature corrosion of superheater tube materials in pulverized coal-fired environment [J]. Spec. Steel, 2003, 24(6): 36
赵双群, 谢锡善. 粉煤燃烧环境中过热器管材的高温腐蚀 [J]. 特殊钢, 2003, 24(6): 36
11 Li J, Zhou R C, Tang L Y, et al. Fireside corrosion behaivor of HR3C steel in simulated coal-fired boiler atmosphere with high sulfur concentration [J]. Therm. Power Gen., 2016, 45(1): 70
李江, 周荣灿, 唐丽英 等. HR3C钢在模拟燃用高硫煤锅炉环境中的高温烟气腐蚀行为 [J]. 热力发电, 2016, 45(1): 70
12 Li J, Zhou R C, Tang L Y, et al. Fireside corrosion behavior of Haynes 282 ahoy in simulated boiler environments firing high sulfur content coal [J]. Therm. Power Gen., 2017, 46(10): 30
李江, 周荣灿, 唐丽英 等. 模拟燃用高硫煤锅炉烟气环境中Haynes 282合金的腐蚀行为 [J]. 热力发电, 2017, 46(10): 30
13 Li T F. High Temperature Corrosion and Hot Chemistry of Metals [M]. Beijing: Chemical Industry Press, 2003: 257
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 257
14 Li P, Qin P, Zhao J, et al. Hot-corrosion behavior of HR3C pre-coated alkali metal sulphate in SO2 atmosphere [J]. J. Mater. Eng., 2017, 45(1): 43
李萍, 秦鹏, 赵杰 等. 预涂覆碱金属硫酸盐的HR3C在含SO2气氛中的热腐蚀行为 [J]. 材料工程, 2017, 45(1): 43
15 Wang Y K, Liu G M, Zhao C, et al. High temperature corrosion behavior of S30432 and HR3C coated with power plant coal ash and synthetic coal ash [J]. Surf. Technol., 2019, 48(11): 365
汪元奎, 刘光明, 赵超 等. S30432和HR3C涂覆某电厂煤灰和合成煤灰高温腐蚀行为研究 [J]. 表面技术, 2019, 48(11): 365
16 Liu W, Huang J Y, Lu J T, et al. The corrosion behavior of a newly developed Ni-Fe-Cr based alloy in simulative flue gas environment [J]. Mater. Rep., 2017, 31(1): 415
刘武, 黄锦阳, 鲁金涛 等. 一种新型Ni-Fe-Cr基合金在模拟锅炉烟气中的腐蚀行为研究 [J]. 材料导报, 2017, 31(1): 415
17 Jiang Y, Zhao S Q, Li W Y. Corrosion behavior of modified Ni based alloy INCONEL 740 in simulated coal-ash/flue-gas environments [J]. Mater. Mech. Eng., 2008, 32(12): 29
江涌, 赵双群, 李维银. 改进型INCONEL740镍基合金在模拟煤灰和烟气环境中的腐蚀行为 [J]. 机械工程材料, 2008, 32(12): 29
18 Li Y, Lu J T, Yang Z, et al. Corrosive behaviors of austenitic stainless steels for boiler in simulated coal ash and high sulfur flue gas [J] J. Chin. Soc. Power. Eng., 2017, 37: 156
李琰, 鲁金涛, 杨珍 等. 锅炉奥氏体不锈钢在模拟煤灰和高硫烟气环境中腐蚀行为的研究 [J]. 动力工程学报, 2017, 37: 156
19 Zhang M Q, Li J, Liu Y G. High temperature corrosion behavior of Sanicro25 in different coal ash / flue gas environments [J]. Dongfang Boiler, 2019, (1): 5
张民强, 李健, 刘宇钢. Sanicro25在不同煤灰/烟气环境中的咼温腐蚀行为研究 [J]. 东方锅炉, 2019, (1): 5
20 Liu G M, Liu K S, Mao X F, et al. Hot corrosion of T91 steel in molten mixture of KCl+Na2SO4+K2SO4 [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 23
刘光明, 刘康生, 毛晓飞 等. T91钢在KCl+Na2SO4+K2SO4熔融盐中的热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37: 23
21 Xiong Y, Liu G M, Zhan F Y, et al. Hot corrosion and failure behavior of three thermal spraying coatings in simulated atmosphere/coal ash environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 369
熊义, 刘光明, 占阜元 等. 3种热喷涂涂层在模拟气氛/煤灰环境下的热腐蚀及失效行为 [J]. 中国腐蚀与防护学报, 2021, 41: 369
22 Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
23 Zeng Z, Natesan K, Cai Z, et al. Effect of coal ash on the performance of alloys in simulated oxy-fuel environments [J]. Fuel, 2014, 117: 133
doi: 10.1016/j.fuel.2013.09.021
24 Li Y, Lu J T, Yang Z, et al. Effect of sulfur content on corrosion behavior of candidate alloys used for 700 ℃ level A-USC boiler in simulated coal ash and flue gas environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 505
李琰, 鲁金涛, 杨珍 等. 烟气S含量对700℃超超临界锅炉候选合金腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2016, 36: 505
25 Qi H B, Liu H P, He Y D, et al. A research on the mechanism of corrosion of Zn Fe alloy electrodeposits [J]. Corros. Sci. Prot. Technol., 1996, 8: 31
齐慧滨, 刘海平, 何业东 等. 金属高温硫化研究进展 [J]. 腐蚀科学与防护技术, 1996, 8: 31
[1] WANG Minghao, WANG Huan, LIU Rui, MENG Fandi, LIU Li, WANG Fuhui. Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[2] ZHU Hailin, LU Xiaomeng, LI Xiaofen, WANG Junxia, LIU Jianhua, FENG Li, MA Xuemei, HU Zhiyong. Synthesis, Corrosion Inhibition and Bactericidal Performance of an Ammonium Salt Surfactant Containing Thiadiazole[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[3] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[4] LI Rui, CUI Yu, LIU Li, FAN Lei, MENG Fandi, WANG Fuhui. Corrosion Behavior of Ti60 Alloy in Fog of NaCl Solution at 600 ℃[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
[5] CHEN Tuchun, XIANG Junhuai, JIANG Longfa, XIONG Jian, BAI Lingyun, XU Xunhu, XU Xincheng. High-temperature Corrosion Behavior of Q235 Steel in Oxidizing Atmosphere Containing Chlorine[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[6] MA Gang, GU Yanhong, ZHAO Jie. Research Progress on Sulfate-reducing Bacteria Induced Corrosion of Steels[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[7] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[9] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] QI Peng, WAN Yi, ZENG Yan, ZHENG Laibao, ZHANG Dun. Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[11] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[12] Tangqing WU,Zhaofen ZHOU,Xinming WANG,Dechuang ZHANG,Fucheng YIN,Cheng SUN. Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[13] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[15] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
No Suggested Reading articles found!