Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (2): 324-330    DOI: 10.11902/1005.4537.2021.054
Current Issue | Archive | Adv Search |
Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings
LI Xujia1, HUI Honghai2, ZHAO Junwen1(), WU Guoqiang1, DAI Guangze1
1.School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
2.The No. 5 Oil Production Plant, PetroChina Changqing Oil Field Company, Xi'an 710000, China
Download:  HTML  PDF(20318KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Novel chromium-free zinc-aluminum coatings with different content of multi-walled carbon nanotubes (MWCNTs) were prepared by ultrasonic dispersion method. The effect of MWCNTs on the morphology, composition, adhesion and corrosion resistance of chromium-free zinc aluminum coatings were investigated by means of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) and adhesion tester as well as immersion test in 3.5%NaCl solution with electrochemical impedance spectroscopy and polarization curve measurement. Results show that when the MWCNTs content was 0%~0.7%, the coatings were smooth flat and dense, the flaky zinc powders and aluminum powders were parallel to the substrate, providing a good physical shielding. When the MWCNTs content was 0.3%, the coating had the best adhesion and showed the best corrosion resistance in NaCl solution, its free-corrosion current was 2.019×10-5 A/cm2, and impedance modulus reached 103 Ω·cm2. In addition, the mechanism of MWCNTs affecting the corrosion resistance of the coating was explored.

Key words:  MWCNTs      chromium-free zinc-aluminum coating      polarization curve      impedance spectroscopy      corrosion resistance      mechanism     
Received:  17 March 2021     
ZTFLH:  TG174.4  
Fund: Sichuan Key Laboratory of High-Performance Materials and Forming Technology for Automobile of China(szjj2017-019)
Corresponding Authors:  ZHAO Junwen     E-mail:  swjtuzjw@swjtu.cn
About author:  ZHAO Junwen, E-mail: swjtuzjw@swjtu.cn

Cite this article: 

LI Xujia, HUI Honghai, ZHAO Junwen, WU Guoqiang, DAI Guangze. Effect of MWCNTs Content on Corrosion Resistance of Chromium-free Zinc-aluminum Coatings. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 324-330.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.054     OR     https://www.jcscp.org/EN/Y2022/V42/I2/324

CompositionKH560ZnAlTween20MWCNTsDeionized waterAdditives
A5.17.51.25------212.5
B---------0.750~0.2643.6
Content / %13.419.63.220~0.715.742.2
Table 1  Chemical compositions of A and B components
Fig.1  Macroscopic morphologies of the coatings with 0% (a), 0.1% (b), 0.3% (c), 0.5% (d) and 0.7% (e) MWCNTs
Fig.2  SEM morphologies of the coatings with 0% (a), 0.3% (b) and 0.7% (c) MWCNTs
Fig.3  Cross-sectional images of the coatings with 0% (a), 0.3% (b) and 0.7% (c) MWCNTs
Fig.4  Local SEM images and EDS analysis of the coatings with 0% (a) and 0.3% (b) MWCNTs
Fig.5  Grid tests of the adhesions of the coatings with 0% (a), 0.1% (b), 0.3% (c), 0.5% (d) and 0.7% (e) MWCNTs
Fig.6  Surface morphologies of the coatings with 0% (a1, b1), 0.1% (a2,b2), 0.3% (a3, b3), 0.5% (a4, b4) and 0.7% (a5, b5) MWCNTs before (a1~a5) and after (b1~b5) immersion in 3.5%NaCl solution for 480 h
Fig.7  Surface morphologies of the scribed coatings with 0% (a1, b1), 0.1% (a2, b2), 0.3% (a3, b3), 0.5% (a4, b4) and 0.7% (a5,b5) MWCNTs before (a1~a5) and after (b1~b5) immersion in 3.5%NaCl solution for 240 h
Fig.8  Polarization curves of the coatings with different MWCNTs contents
Content / %Icorr / A·cm-2Ecorr / V
02.072×10-4-1.281
0.15.784×10-5-1.171
0.32.019×10-5-1.232
0.51.141×10-4-1.329
0.71.176×10-4-1.340
Q235----0.935
Table 2  Self-corrosion current density and self-corrosion potential of the coatings with different MWCNTs contents
Fig.9  Nyquist (a), Bode (b) and equivalent circuit (c) diagrams of the coatings with different MWCNTs contents
Content %RsΩ·cm2QcF·cm-2n1RcΩ·cm2QfF·cm-2n2RfΩ·cm2
03.792.944×10-50.6628.261.80×10-30.60503.3
0.13.275.695×10-50.5674.542.60×10-30.571059
0.33.168.655×10-50.48199.51.95×10-30.532356
0.53.633.408×10-30.6564.041.62×10-30.52565.8
0.73.542.628×10-50.6060.712.87×10-30.64576.3
Table 3  Fitting parameters of EIS of the coatings with different MWCNTs contents
Fig.10  Mechanism of MWCNTs for improving the corrosion resistance of the Zn-Al coating on Q235 steel
1 Luca F A, Ciobanu C I, Andrei A G, et al. Raising awareness on health impact of the chemicals used in consumer products: Empirical evidence from east-central Europe [J]. Sustainability, 2018, 10: 209
2 Xu Y, Teng Y, Xu M X. Study on silane agents and its new application for metal surface treatment [J]. Surf. Technol., 2001, 30(3): 48
徐溢, 滕毅, 徐铭熙. 硅烷偶联剂应用现状及金属表面处理新应用 [J]. 表面技术, 2001, 30(3): 48
3 Gou J F, Wang G, Ning Y L, et al. Preparation and corrosion resistance of chromium-free Zn-Al coatings with two different silane coupling agents [J]. Surf. Coat. Technol., 2019, 366: 1
4 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
师超, 邵亚薇, 熊义等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
5 Zhang K B, Zhang M M, Qiao J F, et al. Enhancement of the corrosion resistance of zinc-aluminum-chromium coating with cerium nitrate [J]. J. Alloy. Compd., 2017, 692: 460
6 Hu H L, Li N, Zhu Y M. Effect of chromate on the electrochemical behavior of sintered Zn-Al coating in seawater [J]. Surf. Coat. Technol., 2008, 202: 5847
7 Li X W, Gu Y, Shi T, et al. Preparation of the multi-walled carbon nanotubes/nickel composite coating with superior wear and corrosion resistance [J]. J. Mater. Eng. Perform., 2015, 24: 4656
8 Li H, He Y, Fan Y, et al. Pulse electrodeposition and corrosion behavior of Ni-W/MWCNT nanocomposite coatings [J]. RSC Adv., 2015, 5(84): 68890
9 Lee K M, Ko Y G, Shin D H. Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: Coating structure and corrosion properties [J]. Curr. Appl. Phys., 2011, 11(suppl.): S55
10 He L F, Guo Z C. Application study on water-borne inorganic zinc-rich coating [J]. Surf. Technol., 2006, 35(1): 55
何丽芳, 郭忠诚. 水性无机富锌涂料的应用研究 [J]. 表面技术, 2006, 35(1): 55
11 Fan T X, Liu Y, Yang K M, et al. Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites [J]. Acta Metall. Sin., 2019, 55: 16
范同祥, 刘悦, 杨昆明等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展 [J]. 金属学报, 2019, 55: 16
12 Ding R, Wang X, Jiang J M, et al. Study on evolution of coating state and role of graphene in graphene-modified low-zinc waterborne epoxy anticorrosion coating by electrochemical impedance spectroscopy [J]. J. Mater. Eng. Perform., 2017, 26: 3319
13 Xie D M, Huang K, Feng X, et al. Improving the performance of zinc-rich coatings using conductive pigments and silane [J]. Corros. Eng. Sci. Technol., 2020, 55: 539
14 Liu S, Gu L, Zhao H C, et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings [J]. J. Mater. Sci. Technol., 2016, 32: 425
15 Ramezanzadeh B, Arman S Y, Mehdipour M. Anticorrosion properties of an epoxy zinc-rich composite coating reinforced with zinc, aluminum, and iron oxide pigments [J]. J. Coat. Technol. Res., 2014, 11: 727
16 Wang T Y, Dong R Y, Xu S, et al. Electrochemical properties of graphene modified mixed metal oxide anodes of Ti/IrTaSnSb-G in NaCl solutions at low temperature [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 289
王廷勇, 董如意, 许实等. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能 [J]. 中国腐蚀与防护学报, 2020, 40: 289
17 Deyab M A, Keera S T. Effect of nano-TiO2 particles size on the corrosion resistance of alkyd coating [J]. Mater. Chem. Phys., 2014, 146: 406
18 Deyab M A. Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell [J]. J. Power Sources, 2014, 268: 50
19 Hayatdavoudi H, Rahsepar M. A mechanistic study of the enhanced cathodic protection performance of graphene-reinforced zinc rich nanocomposite coating for corrosion protection of carbon steel substrate [J]. J. Alloy. Compd., 2017, 727: 1148
20 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
21 Huang S Y, Kong G, Yang B, et al. Effects of graphene on the corrosion evolution of zinc particles in waterborne epoxy zinc-containing coatings [J]. Prog. Org. Coat., 2020, 140: 105531
[1] LIANG Taihe, ZHU Xuemei, ZHANG Zhenwei, WANG Xinjian, ZHANG Yansheng. Corrosion Performance of Transition Layer at Interface of Oxide Scale/substrate Formed on Austenitic Steel Fe32Mn7Cr3Al2Si During High Temperature Oxidation[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[2] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[3] LIU Yongqiang, LIU Guangming, FAN Wenxue, GAN Hongyu, TANG Rongmao, SHI Chao. Effect of Polyethylene Glycol-600 on Acidic Zn-Ni Alloy Electroplating and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 235-242.
[4] LIU Haochen, FAN Lin, ZHANG Haibing, WANG Yingying, TANG Junlei, BAI Xuehan, SUN Mingxian. Research Progress of Stress Corrosion Cracking of Ti-alloy in Deep Sea Environments[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[5] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[6] ZHANG Chengdong, LIU Bin, SHI Zeyao, LIU Yan, CAO Qingmin, JIAN Donghui. Research Progress in Corrosion Behavior of Nickel Aluminum Bronze Alloys in Seawater[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[7] ZHANG Jian, HUANG Jin, XU Jiapeng, LUO Guoqiang, SHEN Qiang. Corrosion Behavior of Molybdenum in LiF-LiCl-LiBr-Li Molten Salt at 500 ℃[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[8] ZHANG Ziyu, WU Xinqiang, HAN En-Hou, KE Wei. A Review on Corrosion Fatigue Crack Growth Behavior of Structural Materials in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2022, 42(1): 9-15.
[9] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[10] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[11] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[12] LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 828-836.
[13] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[14] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[15] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
No Suggested Reading articles found!