Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1689-1697    DOI: 10.11902/1005.4537.2025.047
Current Issue | Archive | Adv Search |
Effect of Temperature Variation on Corrosion Behavior of J55 Steel in an Artificial CO2-saturated Formation Water
ZHAO Biao1, ZHANG Yongqiang2,3, TIAN Huiyun1(), PANG Kun1, CUI Zhongyu1
1 School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
2 Shaanxi Key Laboratory of Carbon Dioxide Sequestration and Enhanced Oil Recovery, Xi'an 710065, China
3 Shaanxi Yanchang Petroleum (Group) Limited Corperation Research Institute, Xi'an 710065, China
Cite this article: 

ZHAO Biao, ZHANG Yongqiang, TIAN Huiyun, PANG Kun, CUI Zhongyu. Effect of Temperature Variation on Corrosion Behavior of J55 Steel in an Artificial CO2-saturated Formation Water. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1689-1697.

Download:  HTML  PDF(21393KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of temperature on the corrosion behavior of J55 petroleum casing steel in an artificial CO2-containing formation water was studied by immersion test at 25, 0 and -20 oC for 10, 30, and 50 d respectively. The results indicate that the corrosion rate of J55 steel at different temperatures decreased in the initial stage and then increased with prolonged immersion time. The highest corrosion rate was observed at 25 oC, while the lowest occurred at -20 oC. XRD analysis revealed that the corrosion products on the steel consisted mainly of FeCO3, along with Fe2O3, α-FeOOH, and γ-FeOOH. SEM results showed that after corrosion at ambient temperature for different immersion periods, the steel surfaces were covered with a loose and porous rust layer after, whereas at low temperatures, fewer corrosion products adhered to the surface, mostly as agglomerated clusters. 3D surface topography analysis demonstrated that all the test steels exhibited pitting corrosion characteristics. Furthermore, with the increasing immersion time at different temperatures, both the depth and maximum volume of the corrosion pits progressively increased.

Key words:  J55 steel      CO2 corrosion      temperature change      oilfield formation water     
Received:  17 February 2025      32134.14.1005.4537.2025.047
ZTFLH:  TG174  
Fund: National Key Research and Development Program of China(2023YFB3710300);Open Fund Project of Shaanxi Province Key Laboratory of CO2 Sequestration and Enhanced Oil Recovery(YJSYZX25SKF0019)
Corresponding Authors:  TIAN Huiyun, E-mail: tianhuiyun@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.047     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1689

Fig.1  OM image (a), SEM image (b), grain boundary distribution image (c), and IPF (d) of J55 steel
Fig.2  Mass loss (a) and corrosion rates (b) of J55 steel during immersion in simulated formation water environment at different temperatures for 10, 30 and 50 d
Fig.3  Macroscopic morphologies of J55 steel after immersion in simulated formation water environment for 10 (a), 30 (b) and 50 d (c) at temperatures of 25 (a1-c1), 0 (a2-c2), -20 (a3-c3), -20-25 (a4-c4) and -20-0 oC (a5-c5)
Fig.4  Microscopic morphologies of corrosion products of J55 steel after immersion in simulated formation water environment for 10 (a1-e1), 30 (a2-e2) and 50 d (a3-e3) at temperatures of 25 (a), 0 (b), -20 (c), -20-25 (d) and -20-0 oC (e)
Fig.5  Microscopic morphologies of J55 steel after rust removal following 10 (a1-e1), 30 (a2-e2) and 50 d (a3-e3) immersion in simulated formation water environment at temperatures of 25 (a), 0 (b), -20 (c), -20-25 (d) and -20-0 oC (e)
Fig.6  XRD spectra of J55 steel immersed in simulated formation water environment for 50 d at different temperatures
Fig.7  Three-dimensional morphologies of corrosion pits of J55 steel immersed in simulated formation water environment for 10 (a1-e1), 30 (a2-e2) and 50 d (a3-e3) at temperatures of 25 (a), 0 (b), -20 (c), -20-25 (d) and -20-0 oC (e)
Fig.8  Maximum volumes (a), maximum depths (b) and average depths (c) of pits for J55 steel immersed in simulated formation water environment at different temperatures for 10, 30 and 50 d
[1] Wang X Z, Yang H, Wang W, et al. Technical advancements in enhanced oil recovery in low permeability reservoirs of Yanchang oilfield [J]. Pet. Geol. Recovery Effic., 2022, 29(4): 69
(王香增, 杨 红, 王 伟 等. 延长油田低渗透油藏提高采收率技术进展 [J]. 油气地质与采收率, 2022, 29(4): 69)
[2] Guo M L, Huang C X, Dong X G, et al. CO2 EOR mechanism of tight sandstone reservoir in Yanchang oilfield [J]. Chem. Eng. Oil Gas, 2018, 47(2): 75
(郭茂雷, 黄春霞, 董小刚 等. 延长油田致密砂岩油藏CO2驱油机理研究 [J]. 石油与天然气化工, 2018, 47(2): 75)
[3] Abd El-Lateef H M, Abbasov V M, Aliyeva L I, et al. Corrosion protection of steel pipelines against CO2 corrosion-a review [J]. Chem. J., 2012, 2: 52
[4] Rajput A, Park J H, Hwan Noh S, et al. Fresh and sea water immersion corrosion testing on marine structural steel at low temperature [J]. Ships Offshore Struct., 2020, 15: 661
[5] Momber A W, Irmer M, Glück N. Performance characteristics of protective coatings under low-temperature offshore conditions. Part 1: Experimental set-up and corrosion protection performance [J]. Cold Reg. Sci. Technol., 2016, 127: 76
[6] Wang K, Wu L, Li Y Z, et al. Experimental study on low temperature fatigue performance of polar icebreaking ship steel [J]. Ocean Eng., 2020, 216: 107789
[7] Wang J G, Meng L H, Fan Z Z, et al. Study on CO2 corrosion of steel N80 and steel J55 in the downhole [J]. Contemp. Chem., 2019, 48: 929
(王继刚, 孟丽慧, 范振忠 等. CO2对井下N80钢和J55钢的腐蚀研究 [J]. 当代化工, 2019, 48: 929)
[8] Zhao G X, Chen C F, Li J P, et al. Corrosion behavior of steel X52 in a simulated pipeline environment contatining CO2 [J]. Corros. Sci. Prot. Technol., 2001, 13: 236
(赵国仙, 陈长风, 李建平 等. X52钢的CO2腐蚀行为 [J]. 腐蚀科学与防护技术, 2001, 13: 236)
[9] Li T, Gao K W, Lu M X. Formation mechanism of CO2 corrosion product scale on X65 steel [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 338
(李 桐, 高克玮, 路民旭. X65钢CO2腐蚀产物膜形成机理 [J]. 中国腐蚀与防护学报, 2007, 27: 338)
[10] Xiang Y, Yuan Y, Zhou P, et al. Metal corrosion in carbon capture, utilization, and storage: Progress and challenges [J]. Strategic Study Chin. Acad. Eng., 2023, 25: 197
(向 勇, 原 玉, 周 佩 等. 碳捕集利用与封存中的金属腐蚀问题研究: 进展与挑战 [J]. 中国工程科学, 2023, 25: 197)
[11] Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
(明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233)
[12] Chen Y, He B, Bai X H. Laboratory experiment investigation on the effect of freezing and thawing cycle on the corrosion behavior of buried pipelines in saline soil [J]. Sci. Technol. Eng., 2018, 18(22): 312
(陈 杨, 何 斌, 白晓红. 冻融循环对埋地管线在盐渍土中腐蚀行为影响的室内模拟试验研究 [J]. 科学技术与工程, 2018, 18(22): 312)
[13] Zhang W H, Yang S W, Guo J, et al. Influence of freezing-thawing on atmospheric corrosion of low alloy weathering steels [J]. Chin. J. Eng., 2010, 32: 883
(张文华, 杨善武, 郭 佳 等. 冰冻/解冻对低合金耐候钢大气腐蚀的影响 [J]. 北京科技大学学报, 2010, 32: 883)
[14] Cheng S X, Zhao X H, Fu A Q, et al. Corrosion behavior of J55 and N80 carbon steels in simulated formation water under different CO2 partial pressures [J]. Coatings, 2022, 12: 1402
[15] Ren S, Wang X, Young D, et al. Impact of residual cementite on inhibition of CO2 corrosion of mild steel [J]. Corros. Sci., 2023, 222: 111382
[16] Xiao X M, Peng Y, Tian Z L. Effect of Cr and Mo contents on corrosion resistance and mechanical properties of weathering steel deposited metal [J]. Trans. China Weld. Inst., 2014, 35(6): 44
(肖晓明, 彭 云, 田志凌. 铬、钼对耐候钢熔敷金属耐蚀性能和力学性能的影响 [J]. 焊接学报, 2014, 35(6): 44)
[17] Wang F P, Li X G. Influence of NaCl on corrosion behavior of API P105 steel in CO2 saturated solution [J]. J. Univ. Sci. Technol. Beijing, 2002, 24: 197
(王凤平, 李晓刚. API P105油管钢在含CO2溶液中的电化学腐蚀行为 [J]. 北京科技大学学报, 2002, 24: 197)
[18] Lin G F, Bai Z Q, Zhao X W, et al. Effect of temperature on scales of carbon dioxide corrosion products [J]. Acta Petrol. Sin., 2004, 25(3): 101
(林冠发, 白真权, 赵新伟 等. 温度对二氧化碳腐蚀产物膜形貌特征的影响 [J]. 石油学报, 2004, 25(3): 101)
[19] Zhou Y Z, Xin S Y, Lei X. Corrosion behavior of J55 casing in geothermal water environment [J]. China Petrol. Mach., 2017, 45(12): 106
(周远喆, 信石玉, 类 歆. J55石油套管在地热水环境中腐蚀行为研究 [J]. 石油机械, 2017, 45(12): 106)
[20] Cao X W, Wang P S, Xu Z Y, et al. Study on the effects of pre-erosion initial structures on the CO2 corrosion behavior of X65 carbon steel [J]. Corros. Sci., 2024, 227: 111752
[21] Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization [J]. Constr. Build. Mater., 2020, 238: 117763
[22] Ding H X, Xiang Y, Lu W P, et al. Selective adsorption and corrosion mechanism of SO2 and its hydrates on X65 welded joints steel in CO2-saturated aqueous solution [J]. Corros. Sci., 2024, 238: 112373
[23] He L M, Zhang Q L, Chen W B, et al. Unraveling short-term O2 contamination on under deposit corrosion of X65 pipeline steel in CO2 saturated solution [J]. Corros. Sci., 2024, 233: 112113
[1] WU Chunsheng, ZHANG Tianyong, LI Bin, YUAN Wenying, ZHANG Xiaoou, JIANG Shuang, WANG Huaiyuan. Corrosion Inhibition Performance of Triazine-derived Quaternary Ammonium Salts for Q235 Carbon Steel in High Temperature and High Pressure CO2 Containing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(6): 1639-1648.
[2] ZHANG Guoqing, YU Zhixia, WANG Yuesong, WANG Zhi, JIN Zhengyu, LIU Hongwei. Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[3] YANG Tao, XU Lei, WANG Jianchun, ZHANG Mingcheng, YAO Yanbo, GAO Guogang, XU Wenzhong, LI Changyun. Research Progress on CO2 Corrosion and Protective Countermeasures for Oil Casing[J]. 中国腐蚀与防护学报, 2024, 44(5): 1134-1144.
[4] OUYANG Jialu, WANG Xixi, HAN Xia, WANG Ziming. Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
[5] PAN Xin, REN Ze, LIAN Jingbao, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[6] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[7] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[8] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[9] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[10] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[11] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[12] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[13] ZHAO Tong, ZHAO Jingmao, JIANG Ruijing. Effect of Flow Velocity and Carbon Chain Length on Corrosion Inhibition Performance of Imidazoline Derivates in High Pressure CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[14] ZHAO Jingmao,CHEN Guohao. Synergistic Inhibition Mechanism of Imidazoline and Thiourea in CO2 Corrosive System[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[15] LIU Yu,LI Yan. Research Progress of CO2 Corrosion of Internal Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
No Suggested Reading articles found!