Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 948-958    DOI: 10.11902/1005.4537.2021.340
Current Issue | Archive | Adv Search |
Influence of Dry-wet Ratio on Electrochemical Corrosion Behavior of CrNiMoV Steel in 120 mmol/L NH4H2PO4 Solution
WANG Tong1,2, MENG Huimin1, GUO Weihua2,3, GE Pengfei1,2, GONG Xiufang2,3, NI Rong2,3, GONG Xianlong2,3, DAI Jun2,3, LONG Bin2,3, LI Quande2,3()
1. Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2. State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3. Dongfang Turbine Co. Ltd., Deyang 618000, China
Cite this article: 

WANG Tong, MENG Huimin, GUO Weihua, GE Pengfei, GONG Xiufang, NI Rong, GONG Xianlong, DAI Jun, LONG Bin, LI Quande. Influence of Dry-wet Ratio on Electrochemical Corrosion Behavior of CrNiMoV Steel in 120 mmol/L NH4H2PO4 Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 948-958.

Download:  HTML  PDF(15665KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of dry-wet ratio of cyclically dry/wet testing, i.e. drying in atmosphere of (55±5)% humidity and wetting in 120 mmol/L NH4H2PO4 solution at an external temperature of (25±2) ℃, on the electrochemical corrosion behavior of 2Cr-1Ni-1.2Mo-0.2V and 2Cr-4Ni-0.4Mo-0.1V steels respectively were investigated by laser scanning confocal microscopy (CLSM), X-ray polycrystalline diffractometer (XRD), X-ray photoelectron spectroscope (XPS), open circuit potential and electrochemical impedance spectroscope. The results show that after tested for 21 d with dry/wet ratio of 0, 1/3, 1 and 3 respectively, uniform corrosion and pitting corrosion emerged for the two steels. With the increase of dry/wet ratio, the corrosion rate and the pitting degree of the two steels increased, but the corrosion resistance of 2Cr-1Ni-1.2Mo-0.2V steel was better than 2Cr-4Ni-0.4Mo-0.1V steel. The corrosion product film of the two steels composed mainly of Fe3(PO4)2, FePO4, Fe2O3, and FeOOH. However, with the increasing dry/wet ratio, the amount of Fe3(PO4)2 and FeOOH decreased, that of Fe2O3 increased in the corrosion product film. Meanwhile, the open circuit potential and charge-transfer resistance decreased, it is worth pointing out in particular that the corrosion rate of 2Cr-1Ni-1.2Mo-0.2V steel exhibited corrosion rate smaller than 2Cr-4Ni-0.4Mo-0.1V steel.

Key words:  CrNiMoV steel      NH4H2PO4      drying/wetting cycle      dry/wet ratio      corrosion     
Received:  26 November 2021     
ZTFLH:  TG174  
About author:  LI Quande, E-mail: quandelee@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.340     OR     https://www.jcscp.org/EN/Y2022/V42/I6/948

Fig.1  Changes of corrosion rate of 1R steel (a) and 2R steel (b) with dry/wet ratio
Fig.2  Corrosion images of corrosion products of 1R (a-d) and 2R (e-h) steel at dry/wet=0 (a, e), dry/wet=1/3 (b, f), dry/wet=1 (c, g) and dry/wet=3 (d, h) after test for 21 d
SteelsConditionSurface roughness / μmSpecific surface area
RaRqRz
1RDry/wet=00.70.84.01.5
Dry/wet=1/31.31.77.62.0
Dry/wet=11.72.08.12.3
Dry/wet=34.35.325.95.3
2RDry/wet=00.81.04.31.6
Dry/wet=1/31.51.88.02.1
Dry/wet=12.12.511.32.5
Dry/wet=34.86.128.46.0
Table 1  Surface roughness and specific surface area of the 1R steel and 2R steel, which were tested in different immersion conditions for 21 d
Fig.3  Corrosion images of 1R (a-d) and 2R (e-h) after removal of corrosion products at dry/wet=0 (a, e), dry/wet=1/3 (b, f), dry/wet=1 (c, g) and dry/wet=3 (d, h) after test for 21 d
Fig.4  Three-dimensional morphologies of pits on 1R (a-d) and 2R (e-h) at dry/wet=0 (a, e), dry/wet=1/3 (b, f), dry/wet=1 (c, g) and dry/wet=3 (d, h) after test for 21 d
Fig.5  Aperture and depth of pits on 1R steel (a) and 2R steel (b) after test under different immersion conditions
Fig.6  XRD patterns of the corrosion product on the 1R steel (a, b) and 2R steel (c, d) after test under different immersion conditions
Fig.7  XPS spectra of corrosion product film on the 1R steel and 2R steel after test under dry/wet=1/3 condition for 21 d: (a) 1R steel, Fe2p3/2, (b) 1R steel, Cr2p3/2, (c) 2R steel, Fe2p3/2, (d) 2R steel, Cr2p3/2
ElementPeakSpecies / binding energy
Fe2p3/2Fe3O4/709 eV; Fe2O3/711.5 eV; FeOOH/711.8 eV;Fe3(PO4)2/710.1 eV; FePO4/712.8 eV
Cr2p3/2CrO3/578.9 eV;Cr2O3/576 eV; Cr(OH)3/577.1 eV
Table 2  Binding energies of the primary components in the corrosion product film
ElementsProductPeak areas (Percentage of peak area / %)
1R2R
Fe 2p3/2Fe3O4931 (1.79)884.38 (1.81)
Fe2O310257.22 (19.7)10204.03 (20.88)
FeOOH8668.64 (16.65)7254.12 (14.85)
Fe3(PO4)216828.17 (32.33)15985.2 (32.72)
FePO415373.17 (29.53)14529.2 (29.74)
Cr 2p3/2Cr2O3400.8 (20.73)274 (14.71)
CrO3948.52 (49.05)1239.64 (18.72)
Cr (OH)3584.49 (30.22)3765.1 (66.57)
Table 3  XPS spectra peak aera and its related percentage for Fe 2p3/2、Cr 2p3/2 related compounds in the corrosion product filmon the 1R steeland 2R steelafter test underdry/wet=1/3
Fig.8  Open circuit potentials of 1R steel (a) and 2R steel (b) aftertest under different immersion conditions for 21 d
Fig.9  Nyquist plots (a, c) and Bode plots (b, d) of the 1R steel (a, b) and 2R steel (c, d) after test under different immersion conditions for 21 d
Fig.10  Equivalent circuits of the 1R steel and 2R steel aftertest under different immersion conditions for 21 d
SteelConditionRs / Ω·cm2QfRf / Ω·cm2QdlRct / Ω·cm2
Y0 / Ω-1·cm-2·S nnY0 / Ω-1·cm-2·S nn
1RDry/wet=080.363.19 ×10-50.31118.25.1 ×10-40.52861.9
Dry/wet=1/381.032.33 ×10-70.6293.037.08 ×10-40.57585.6
Dry/wet=180.933.26 ×10-60.7418.117.86 ×10-40.57539
Dry/wet=379.44.7 ×10-40.7620.576.29 ×10-40.74181
2RDry/wet=085.094.76 ×10-40.65224.75.76 ×10-40.91455.7
Dry/wet=1/386.583.24 ×10-40.73160.33.39 ×10-40.92297.2
Dry/wet=185.513.64 ×10-40.771323.81 ×10-40.90262.4
Dry/wet=382.656.02 ×10-40.76120.37.14 ×10-40.95139.1
Table 4  Electrochemical impedance spectroscopy parameters of 1R steel and 2R steel aftertest under different immersion conditions for 21 d
[1] Huang A Z. Production of environmental ammonium phosphate powder extinguishing agent from fertilizer grade monoammonium phosphate [J]. Phosphate Compd. Fert., 2018, 33(10): 22
(黄安智. 用肥料级磷酸一铵生产环保型磷酸铵盐干粉灭火剂 [J]. 磷肥与复肥, 2018, 33(10): 22)
[2] Mu Y F, Wang Y, Yang Y. Determination of phosphorus content in MAP and DAP by ICP-AES [J]. Phosphate Compd. Fert., 2018, 33(9): 38
(穆永峰, 汪耘, 杨漾. 电感耦合等离子体发射光谱法测定磷酸一铵和磷酸二铵中磷含量 [J]. 磷肥与复肥, 2018, 33(9): 38)
[3] Zhou G Y, Chen S G, Pu Q C. Technical status of industrial grade monoammonium phosphate production by WPA purification method and industrial application of its key technology [J]. Phosphate Compd. Fert., 2015, 30(3): 31
(周贵云, 陈仕刚, 蒲秋岑. 湿法磷酸净化生产工业级磷酸一铵的技术现状及关键技术的工业应用 [J]. 磷肥与复肥, 2015, 30(3): 31)
[4] Chang H Q, Zhang Y. Application and problem analysis of industrial waste heat power generation system [J]. Energy Conserv., 2015, 34(9): 44
(常海青, 张燕. 工业余热发电系统的应用及问题分析 [J]. 节能, 2015, 34(9): 44)
[5] Chu X L, Zhu D S. Comprehensive utilization of low temperature waste heat resources in chemical industry [J]. Mod. Chem. Res., 2020, (15): 100
(褚秀玲, 朱德颂. 综合利用化工行业低温余热资源 [J]. 当代化工研究, 2020, (15): 100)
[6] Luo L H, Huang Y H, Xuan F Z. Deflection behaviour of corrosion crack growth in the heat affected zone of CrNiMoV steel welded joint [J]. Corros. Sci., 2017, 121: 11
doi: 10.1016/j.corsci.2017.01.020
[7] Huang T. Research on corrosion behavior of weathering steel in marine atmosphere of the south China sea [D]. Beijing: Central Iron & Steel Research Institute, 2018
(黄涛. 耐候钢在南海海洋大气环境下的腐蚀行为研究 [D]. 北京: 钢铁研究总院, 2018)
[8] Morcillo M, Díaz I, Chico B, et al. Weathering steels: from empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
[9] Thee C, Hao L, Dong J H, et al. Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition [J]. Corros. Sci., 2014, 78: 130
doi: 10.1016/j.corsci.2013.09.008
[10] Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12: 227
doi: 10.1016/S0010-938X(72)90671-3
[11] Zhang Q P, Yang H Y, Wang J, et al. Influence of dry-wet cycles on the marine corrosion behavior of carbon steel [J]. Surf. Technol., 2020, 49(7): 222
(张庆普, 杨海洋, 王佳 等. 干湿交替环境状态对碳钢海洋腐蚀行为的影响 [J]. 表面技术, 2020, 49(7): 222)
[12] Li C L, Ma Y T, Li Y, et al. EIS monitoring study of atmospheric corrosion under variable relative humidity [J]. Corros. Sci., 2010, 52: 3677
doi: 10.1016/j.corsci.2010.07.018
[13] Hao W K, Liu Z Y, Wu W, et al. Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments [J]. Mater. Sci. Eng., 2018, 710A: 318
[14] Wang T, Meng H M, Ge P F, et al. Electrochemical corrosion behavior of a CrNiMoV steel in NH4H2PO4 solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 551
(王通, 孟惠民, 葛鹏飞 等. 一种CrNiMoV钢在NH4H2PO4溶液中的电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 551)
[15] Zhang F B, Li R, Pan X X, et al. Behaviors of corrosion and inhibition of X70 steel in (NH4)2CO3 solutions [J]. Corrros. Prot., 2005, 26: 375
(张付宝, 李容, 潘献晓 等. X70钢在 (NH4)2CO3溶液中腐蚀及缓蚀行为 [J]. 腐蚀与防护, 2005, 26: 375)
[16] Lee H S, Kim D S, Jung J S, et al. Influence of peening on the corrosion properties of AISI 304 stainless steel [J]. Corros. Sci., 2009, 51: 2826
doi: 10.1016/j.corsci.2009.08.008
[17] Hao Y W, Bo D, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel [J]. J. Iron Steel Res. Int., 2009, 16: 68
[18] Tomashov N D. Development of the electrochemical theory of metallic corrosion [J]. Corrosion, 1964, 20: 7
[19] Wang J, Tsuru T. Electrochemical measurements under thin electrocute laer using kelvin probe reference electrode [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 173
(王佳, 水流彻. 使用Kelvin探头参比电极技术进行薄液层下电化学测量 [J]. 中国腐蚀与防护学报, 1995, 15: 173)
[20] Zhang P P, Yang Z M, Chen Y, et al. Corrosion behavior of Cr bearing weathering steel in simulated marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 93
(张飘飘, 杨忠民, 陈颖 等. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 93)
[21] Xu Z X, Zhou H R, Yao W. Corrosion behavior of automotive cold rolled steels DC06 and DP600 in NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 155
(徐致孝, 周和荣, 姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 155)
[22] Hœrlé S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles [J]. Corros. Sci., 2004, 46: 1431
doi: 10.1016/j.corsci.2003.09.028
[23] Li T. Enhanced phosphate removal efficiency by using ferrous iron and its mechanism [D]. Harbin: Harbin Institute of Technology, 2015
(李婷. 亚铁强化去除水中磷酸盐的作用机制与效能 [D]. 哈尔滨: 哈尔滨工业大学, 2015)
[24] Li Q D, Ran D, Zhai F Q, et al. Effect of CO32- on the electrochemical behaviour of 14Cr12Ni3Mo2VN stainless steel in a sodium chloride solution [J]. Int. J. Electrochem. Sci., 2020, 15: 2973
[25] Grosvenor A P, Kobe B A, Biesinger M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds [J]. Surf. Interface Anal., 2004, 36: 1564
doi: 10.1002/sia.1984
[26] Luo H, Dong C F, Xiao K, et al. Characterization of passive film on 2205 duplex stainless steel in sodium thiosulphate solution [J]. Appl. Surf. Sci., 2011, 258: 631
doi: 10.1016/j.apsusc.2011.06.077
[27] Ran D, Meng H M, Liu X, et al. Effect of pH on corrosion behavior of 14Cr12Ni3WMoV stainless steel in chlorine-containing solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 51
(冉斗, 孟惠民, 刘星 等. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 51)
[28] Hu J, Wang T T, Wang Z, et al. Corrosion inhibition effect research of compound corrosion inhibitor for N80 steel in HCl solution medium [J]. Petro-Chem. Equip., 2017, 46(6): 1
(胡军, 王甜甜, 王祯 等. 盐酸介质中复配缓蚀剂对N80钢缓蚀效果分析研究 [J]. 石油化工设备, 2017, 46(6): 1)
[29] Ran D, Meng H M, Li Q D, et al. Effect of temperature on corrosion behavior of 14Cr12Ni3WMoV stainless steel in 0.02 mol/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 362
(冉斗, 孟惠民, 李全德 等. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/LNaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 362)
[30] Lu S L. The formation and impacting mechanism of corrosion product film of low chromium alloy steel in CO2/H2S environment [D]. Beijing: University of Science and Technology Beijing, 2017
(卢宋乐. 含Cr低合金钢CO2/H2S环境腐蚀产物膜形成及作用机理研究 [D]. 北京: 北京科技大学, 2017)
[31] Qian Y H, Niu D, Xu J J, et al. The influence of chromium content on the electrochemical behavior of weathering steels [J]. Corros. Sci., 2013, 71: 72
doi: 10.1016/j.corsci.2013.03.002
[32] Qian Y H, Ma C H, Niu D, et al. Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels [J]. Corros. Sci., 2013, 74: 424
doi: 10.1016/j.corsci.2013.05.008
[33] Hao L, Zhang S X, Dong J H, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion [J]. Corros. Sci., 2012, 54: 244
doi: 10.1016/j.corsci.2011.09.023
[1] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[3] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[4] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[5] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[6] LIU Jingyuan, ZANG Qing'an, SUN Changjun, ZHANG Cuiqing, LI Xiaofeng. Research Progress on Corrosion and Protection of Water System for Coal Gasification[J]. 中国腐蚀与防护学报, 2024, 44(1): 27-37.
[7] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[8] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[9] MA Yan, LAN Yuning, CHEN Jiawei. A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(1): 261-266.
[10] BIAN Yafei, TANG Wenming, ZHANG Jie, MAO Ruirui, MIAO Chunhui, CHEN Guohong. Soil Corrosion Characteristics of Q235 Steel Grounding Material Used in Power Grid in Anhui Province[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[11] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[12] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[13] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[14] LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[15] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
No Suggested Reading articles found!