Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 1081-1086    DOI: 10.11902/1005.4537.2021.329
Current Issue | Archive | Adv Search |
Microbial Contamination and Corrosion in Aircraft Fuel System
LI Zhenghong, ZHANG Zhichao, DING Lei(), SUI Qingyun, HU Xiaobing, LI Cha
Mechatronic System Department, Shenyang Aircraft Design & Research Institute, Aviation Industry Corporation of China, Shengyang 110035, China
Cite this article: 

LI Zhenghong, ZHANG Zhichao, DING Lei, SUI Qingyun, HU Xiaobing, LI Cha. Microbial Contamination and Corrosion in Aircraft Fuel System. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1081-1086.

Download:  HTML  PDF(1432KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The possible causes for the microbial contamination of aircraft fuel during the process of manufacturing, transportation, storage, and daily use and maintenance of aircraft are summarized and analyzed by taking the prerequisite for microbial growth and reproduction, namely water, nutrients, temperature, and pH etc. into consideration. The effect of the existing microorganisms on the fuel performance, fuel tank structure, fuel pump/oil filter, and non-metallic materials are also summarized in terms of the growth and reproduction characteristics of microorganisms in the fuel system. In addition, we comparatively analyzed the existing methods and standards related with the detection of microorganisms for the aircraft fuel systems. Finally, the prevention methods and processes against microbes are also analyzed. This review will provide a theoretical basis and research direction for the detection and prevention in microbial contamination in aircraft fuel system, while play a guiding role for engineering application.

Key words:  aircraft fuel system      microbial contamination      test      corrosion     
Received:  19 November 2021     
ZTFLH:  TG172  
Corresponding Authors:  DING Lei, E-mail: dinglei601@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.329     OR     https://www.jcscp.org/EN/Y2022/V42/I6/1081

Fig.1  Schematic diagram of microbial growth location[16]
Fig.2  Macroscopic morphology of aircraft fuel tank after corrosion[25]
Fig.3  Clogged engine oil filter elements and outer shell of engine oil filter elements[26]
Fig.4  Slag removal of polyurethane foam from aircraft fuel tank[26]
MethodMicrobial speciesTesting timeOil phaseAqueous phase
MildModerateSevereMildModerateSevere
Microbe Monitor2 CFU·L-1Fungus, Mold, Yeast, M. resinae, Mildew mycelium, Mold spores1-5 d≤40004000-20000≥20000≤10001000-10000≥10000
Easicult combi CFU·L-1Fungus, Mold, Yeast, M. resinae, Mildew mycelium, Mold spores1-5 d≤40004000-20000≥20000≤10001000-10000≥10000
FUELSTAT resinae µ·L-1M. resinae, Mildew mycelium10 min≤150150-750≥750≤3333-166≥166
HY-LITE jet A1 RLU·L-1Fungus, mold, yeast, M. resinae, Mildew mycelium, Anaerobic microorganisms<10 min≤10001000-5000≥5000≤10001000-5000≥5000
Table 1  Comparison of detection methods for microbial contamination in fuel oil
Fig.5  Detection process of microbes in aircraft fuel systems.
[1] Abdallah M, Benoliel C, Drider D, et al. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments [J]. Arch. Microbiol., 2014, 196: 453
doi: 10.1007/s00203-014-0983-1 pmid: 24744186
[2] Brown L M, McComb J P, Vangsness M D, et al. Community dynamics and phylogenetics of bacteria fouling Jet A and JP-8 aviation fuel [J]. Int. Biodeterior. Biodegrad., 2010, 64: 253
doi: 10.1016/j.ibiod.2010.01.008
[3] Bücker F, Barbosa C S, Quadros P D, et al. Fuel biodegradation and molecular characterization of microbial biofilms in stored diesel/biodiesel blend B10 and the effect of biocide [J]. Int. Biodeterior. Biodegrad., 2014, 95: 346
doi: 10.1016/j.ibiod.2014.05.030
[4] Chong H Q, Li Q X. Microbial production of rhamnolipids: opportunities, challenges and strategies [J]. Microb. Cell Factories, 2017, 16: 137
doi: 10.1186/s12934-017-0753-2
[5] Zhang Y X, Chen C Y, Liu H W, et al. Research progress on mildew induced corrosion of al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 13
(张雨轩, 陈翠颖, 刘宏伟 等. 铝合金霉菌腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 13)
[6] Etuk C U, John R C, Ekong U E, et al. Growth study and hydrocarbonoclastic potential of microorganisms isolated from aviation fuel spill site in Ibeno, Nigeria [J]. Bull. Environ. Contam. Toxicol., 2012, 89: 727
doi: 10.1007/s00128-012-0796-3
[7] Radwan O, Gunasekera T S, Ruiz O N. Robust multiplex quantitative polymerase chain reaction assay for universal detection of microorganisms in fuel [J]. Energy Fuels, 2018, 32: 10530
doi: 10.1021/acs.energyfuels.8b02292
[8] Lv M Y, Li Z X, Du M, et al. Effect of culture medium on microbiologically influenced corrosion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 757
(吕美英, 李振欣, 杜敏 等. 培养基对微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 757)
[9] Raikos V, Vamvakas S S, Sevastos D, et al. Water content, temperature and biocide effects on the growth kinetics of bacteria isolated from JP-8 aviation fuel storage tanks [J]. Fuel, 2012, 93: 559
doi: 10.1016/j.fuel.2011.10.028
[10] Ma Z Y, Zhu Y J, Zhang J G, et al. Calamity of microorganism in ariation fuel system [J]. Petrol. Prod. Appl. Res., 2000, 18(1): 24
(马振瀛, 朱艳静, 张建国 等. 航空燃油系统的微生物灾害 [J]. 石油商技, 2000, 18(1): 24)
[11] Zhang Q, Tang M, Li D. Mechanism of microbial corrosion in aircraft aluminum tank [J]. Aviat. Eng. Maint., 1997, (4): 28
(张琦, 唐萌, 李荻. 飞机铝合金油箱微生物腐蚀机理 [J]. 航空制造工程, 1997, (4): 28)
[12] International Air Transport Association. Guidance Material on Microbiological Contamination in Aircraft Fuel Tanks [M]. 2nd ed. Montreal: International Air Transport Association, 2005: 1
[13] ASTM International. Standard guide for microbial contamination in fuels and fuel systems [S]. West Conshohocken: ASTM International, 2012
[14] Rauch M E, Graef H W, Rozenzhak S M, et al. Characterization of microbial contamination in United States air force aviation fuel tanks [J]. J. Ind. Microbiol. Biotechnol., 2006, 33: 29
doi: 10.1007/s10295-005-0023-x
[15] Kosseva M, Stanchev C. Microbial contamination of Bulgarian aviation fuel [J]. Biotechnol. Biotechnol. Equip., 1994, 8(4): 38
[16] Sun Y. Microbial contamination in aviation fuel [J]. Shandong Chem. Ind., 2015, 44(9): 121
(孙宇. 浅析航空燃油中的微生物污染 [J]. 山东化工, 2015, 44(9): 121)
[17] Guo Q Y. Aviation kerosene and prevention of microbial contamination [J]. J. Hebei Univ. Sci. Technol., 2010, 31: 270
(郭启营. 航空煤油中微生物污染及防治 [J]. 河北科技大学学报, 2010, 31: 270)
[18] Wu X J. Microbial hazards of jet fuel and counter measures [J]. J. Civil Aviat. Flight Univ. China, 2001, 12(4): 20
(吴晓金. 喷气燃料的微生物危害及对策 [J]. 中国民航飞行学院学报, 2001, 12(4): 20)
[19] Liu J Z. Microbial corrosion and control of aircraft integral fuel tanks [J]. Xaic. Tech., 2002, (2): 21
(刘继宗. 飞机整体油箱的微生物腐蚀及其控制 [J]. 西飞科技, 2002, (2): 21)
[20] Xu C M. Impact of temperature on growth and reproduction of Microbiology in jet fuel [J]. Corros. Prot. Petrochem. Ind., 2011, 28(1): 23
(许长明. 温度对航空煤油中微生物生长繁殖的影响 [J]. 石油化工腐蚀与防护, 2011, 28(1): 23)
[21] Feng Z Y, Chen L, Zhou H W. Microbial corrosion of aircraft integral fuel tanks and related maintenance [J]. Aviat. Maint. Eng., 2009, (3): 54
(冯振宇, 陈磊, 周惠文. 飞机整体油箱的微生物腐蚀及维护 [J]. 航空维修与工程, 2009, (3): 54)
[22] Guo X W, Vavilov V, Shiryaev V. Thermal nondestructive testing of corrosion in aviation aluminum panels and data processing algorithms [J]. J. Mech. Eng., 2009, 45(3): 208
(郭兴旺, Vavilov V, Shiryaev V. 飞机铝板腐蚀的热无损检测及数据处理方法 [J]. 机械工程学报, 2009, 45(3): 208)
[23] Cui Y Y, Ning L N. Corrosive behavior of 7075-T6 aluminum alloy as plane fuel tank material in accumulative water environment [J]. Mater. Prot., 2014, 47(12): 29
(崔艳雨, 宁丽纳. 飞机油箱用材7075铝合金在积水环境中的微生物腐蚀规律 [J]. 材料保护, 2014, 47(12): 29)
[24] Liang J. Microoganism, the Formidable enemy of jet fuel [J]. Oil gas Storage Transp., 1995, 14(5): 52
(梁俊. 航空燃料的大敌—微生物 [J]. 油气储运, 1995, 14(5): 52)
[25] Luo L P, Xu K Z. Fuel contamination prevention and maintenance actions [J]. Aviat. Maint. Eng., 2010, (4): 49
(罗龙朋, 徐开志. 燃油污染预防与维护措施 [J]. 航空维修与工程, 2010, (4): 49)
[26] Zhao A J, Shi G S, Han X. Study on microbial contamination of military aircraft fuel [J]. Aircr. Des., 2017, 37(5): 48
(赵安家, 施广生, 韩笑. 军机燃油微生物污染的研究 [J]. 飞机设计, 2017, 37(5): 48)
[27] Zhou S, Xie L Y, Hui L, et al. Fatigue life degenerating rule of pre-corroded aviation aluninun alloy [J]. J. Northeastern Univ. (Nat. Sci.), 2016, 37: 969
(周松, 谢里阳, 回丽 等. 航空铝合金预腐蚀疲劳寿命退化规律 [J]. 东北大学学报 (自然科学版), 2016, 37: 969)
[28] Hassan H M. Determination of microbial damage caused by oxygen free radicals, and the protective role of superoxide dismutase [J]. Meth. Enzymol., 1984, 105: 404
[29] ASTM International. Standard practice for enumeration of viable bacteria and fungi in liquid fuels - filtration and culture procedures [S]. West Conshohocken: ASTM International, 2009
[30] Hu D, Lin W F, Zeng J, et al. Profiling the microbial contamination in aviation fuel from an airport [J]. Biofouling, 2019, 35: 856
doi: 10.1080/08927014.2019.1671977
[31] Ning L N. Researches of the influence of microorganism in aircraft fuel system [D]. Tianjin: Civil Aviation University of China, 2015
(宁丽纳. 飞机燃油系统中微生物的影响研究 [D]. 天津: 中国民航大学, 2015)
[32] Sun X F, Xiong Y, Niu M M, et al. Lysing agents for characteristic polluting microorganisms in jet fuels [J]. Contemp. Chem. Ind., 2019, 48: 1380
(孙新枫, 熊云, 牛明明. 喷气燃料特征污染微生物裂解剂探索 [J]. 当代化工, 2019, 48: 1380)
[33] Wu M, Hou M L, Hu C J. Introduction to microbiological contamination in aircraft fuel system [J]. Failure Anal. Prev., 2007, 2(2): 58
(吴旻, 侯民利, 胡成江. 飞机燃油系统中微生物的污染 [J]. 失效分析与预防, 2007, 2(2): 58)
[34] Xie J B. Microbial contamination in fuels and control [J]. Pet. Refin. Eng., 2008, 38(2): 54
(谢俊斌. 燃油微生物污染问题及防治 [J]. 炼油技术与工程, 2008, 38(2): 54)
[1] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[3] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[4] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[5] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[6] LIU Jingyuan, ZANG Qing'an, SUN Changjun, ZHANG Cuiqing, LI Xiaofeng. Research Progress on Corrosion and Protection of Water System for Coal Gasification[J]. 中国腐蚀与防护学报, 2024, 44(1): 27-37.
[7] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[8] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[9] MA Yan, LAN Yuning, CHEN Jiawei. A Novel Cross-sectional Metallography Method for Determining Hydrogen Absorption Concentration and Hydrogen Absorption Amount of Zr-Sn-Nb Alloy Cladding Caused by High Temperature Water Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(1): 261-266.
[10] BIAN Yafei, TANG Wenming, ZHANG Jie, MAO Ruirui, MIAO Chunhui, CHEN Guohong. Soil Corrosion Characteristics of Q235 Steel Grounding Material Used in Power Grid in Anhui Province[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[11] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[12] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[13] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[14] LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[15] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
No Suggested Reading articles found!