Please wait a minute...
金属学报  1997, Vol. 33 Issue (11): 1171-1181    
  论文 本期目录 | 过刊浏览 |
γ—TiAl合金拉伸形变的热激活参量
王瑜;林栋梁;C.C.Law
上海交通大学国家教委高温材料及高温测试开放实验室;上海;200030;上海交通大学国家教委高温材料及高温测试开放实验室;上海;200030;Materials&MechanicsEngineering;UnitedtechnologiesCoporation-Pratt&;06108;USA
THERMAL ACTIVATION PARAMETERS OF TENSILE DEFORMATION OF GAMMA TITANIUM ALUMINIDE
WANG Yu;LIN Dongliang(The Public Laboralory of State Education Commission for High Temperature Materials and High Temperature Tests; Shanghai Jiaotong University; Shanghai 200030); C.C. Law(Materials and Mechanics Engineering; United Technologies Coporalion-Pratt & Whitney; East Hartford; CT 06I08; USA)
引用本文:

王瑜;林栋梁;C.C.Law. γ—TiAl合金拉伸形变的热激活参量[J]. 金属学报, 1997, 33(11): 1171-1181.
, , . THERMAL ACTIVATION PARAMETERS OF TENSILE DEFORMATION OF GAMMA TITANIUM ALUMINIDE[J]. Acta Metall Sin, 1997, 33(11): 1171-1181.

全文: PDF(1721 KB)  
摘要: 采用拉伸变形方式,在285—1273K范围内测定了具有近全片层组织的γ-TiAl合金(Ti-47Al-2Mn-2Nb-0.8TiB2)在屈服点的热激活参量:激活体积V,激活焓△H,激活自由焓△G和激活熵△S;据此推断控制γ-TiAl合金拉伸形变的微观位错机制.发现在实验温度范围内,存在着三个温度区间,分别对应三个不同的可能热辅助位错运动机制:在低温温区(285—398K),位错运动阻力主要是Peierls-Nabarro阻力;在中温温区(523—873K),流变应力对温度和应变速率不敏感,但仍是一热激活过程;在高温温区(≥973K),控制塑性变形速率的微观机制是位错攀移此外,还发现激活熵△S随温度变化趋势与激活体积V相似,这在一定程度上也反映热辅助位错运动机制。
关键词 金属间化合物γ-TiAl合金拉伸形变热激活位错机制    
Abstract:Thermal activation volume V, activation enthalpy △H, activation free enthalpy △G and activation entropy △S of tensile deformation of a gamma titanium aluminide have been measured in a temperature range from low temperature(285 K) to 1273 K. The γ-TiAl has a chemical composition of Ti-47Al-2Mn-2Nb-0.8TiB2 and a microstructure of near lamellar, and the measurement was conducted at yield points. From the values and their temperature dependence of the measured activation parameters, as well as the temperature dependence of yield stress,the dislocation mechanisms of tensile deformation of the alloy have been speculated.It is found that there exist three temperature regions,which correspond to different possible thermal activation mechanisms of dislocation motion. In low temperature region(285-398K), the mechanism is mainly characterized by the overcoming of Peierls-Nabarro resistence. In intermediate temperature region(523-873K), the mechanism is a weak thermally activated process as the plastic flow is neither sensitive to temperature nor to the strain rate.In high temperature region(≥973 K), the rate controlling machanism is dislocation climbing.In addition,it is found that,activation entropy △S, whose variation with temperature is similar to that of activation volume V, also reflects the thermal activation mechanism of dislocation movement in some degree.
Key wordsintermetallics    gamma titanium aluminide    tensile deformation    thermal activation    dislocation mechanism
收稿日期: 1997-11-18     
基金资助:国家自然科学基金!59331010;;上海交通大学和美国United Technologies Coporation-Pratt & Whitney公司合作项目
1KimY—W.JOM,1989;41(7):24
2KimY—W.JOM,1994;46(7):30
3YamaguchiM,InuiH.StructuralIntermetallics.Warrendale,PA:TMS,1993:127
4HuangSC,HallEL.MetallTrans,1991;A22:427
5KumpfertJ,KimY—W,DimidukDM.MaterSciEng,1995;A192/193:465
6ChanKS,KimY-WMetallTrans,1993;A24:114
7MorrisMA,LipeT.ScrMetallMater,1994;31:689
8AppelF,SparkaV,WagnerR.MaterResSocSympProc,1995;364:623
9AppelF,WagnerR.In:KimY—W,WagnerR,YamaguchMeds,GammaTitaniumAluminides,TMS,1995:231
10ViguierB,BonnevilleJ.MaterResSocSympProc,1995;364:629
11ViguierB,CieslarM.MaterResSocSympProc,1995;364:653
12ViguierB,CleslarM.In:KimY—W,WagnerR,YamaguchMeds,GammaTitaniumAluminides,TMS,1995:275
13SchoeckG.PhysStatusSolidi,1965;8:499
14SurekT,LutonMJ,JonasJJ.PhilosMag,1994;A69:105
15SchafrikRE.MetallTrans,1977;A8:1003
16GuiuF,PrattPL.PhysStatusSolid,1964;6:111
17LinDongliang,Wangyu,LawCC.MaterSciEng(A),tobePublished18EzzSS,HirschPB.PhilosMag,1994;A69:105
19ConradH.JOM,1964;16:582
20HallEQ.ProcPhysSoc,1951;B64:747
21PetchNJ.JIronSteelInst,1953;174:25
22KrollS,MehrerH,StolwijkN,HerzigC,RosenkranzR,FrommeyerG.ZMettallkd,1992;83:591
23SprengelW,OikawaN,NakajimaH.Intermetallics,1996;4:185
24王瑜,林栋梁.金属学报,1997;33:1021
25JonasJJ,LutonMJ.MetallTrans,1971;2:3492
[1] 丁宗业, 胡侨丹, 卢温泉, 李建国. 基于同步辐射X射线成像液/固复层界面氢气泡的形核、生长演变与运动行为的原位研究[J]. 金属学报, 2022, 58(4): 567-580.
[2] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[3] 周丽君, 位松, 郭敬东, 孙方远, 王新伟, 唐大伟. 基于飞秒激光时域热反射法的微尺度Cu-Sn金属间化合物热导率研究[J]. 金属学报, 2022, 58(12): 1645-1654.
[4] 宫声凯, 尚勇, 张继, 郭喜平, 林均品, 赵希宏. 我国典型金属间化合物基高温结构材料的研究进展与应用[J]. 金属学报, 2019, 55(9): 1067-1076.
[5] 吉华,邓运来,徐红勇,郭伟强,邓建峰,范世通. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响[J]. 金属学报, 2019, 55(3): 376-388.
[6] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[7] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[8] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[9] 张敏, 慕二龙, 王晓伟, 韩挺, 罗海龙. TA1/Cu/X65复合板焊接接头微观组织及力学性能[J]. 金属学报, 2018, 54(7): 1068-1076.
[10] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[11] 耿林, 吴昊, 崔喜平, 范国华. 基于箔材反应退火合成的TiAl基复合材料板材研究进展[J]. 金属学报, 2018, 54(11): 1625-1636.
[12] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[13] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[14] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[15] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.