Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (3): 230-234    
  研究报告 本期目录 | 过刊浏览 |
还原剂对锌基水性耐蚀涂层性能的影响
李涛;赵麦群;赵阳;郭佳
西安理工大学材料科学与工程学院 710048
EFFECTS OF THE REDUCTANT ON THE ZINC-BASED WATERBORNE ANTICORROSIVE COATING
LI Tao; ZHAO Maiqun; ZHAO Yang; GUO Jia
College of Materials Science and Engineering; Xi’an University of Technology; Xi’an 710048
全文: PDF(1050 KB)  
摘要: 

采用胶带剥离、硝酸铵快速腐蚀、热失重分析和电化学等方法研究了丙烯酸、丁二酸、丙三醇和葡萄糖等4 种还原剂及其含量对锌基水性涂层结合强度和耐蚀性能的影响,并与普通镀锌件对比。结果表明,还原剂种类和用量均显著影响涂层的结合强度和耐蚀性能,以丙烯酸作还原剂,在较大成分范围内涂层具有高的结合强度,而丁二酸、丙三醇、葡萄糖作还原剂时只有在低含量下涂层结合性能优良。涂层耐腐蚀时间随还原剂含量的增加均出现先增大后减小的趋势。以丙烯酸或丙三醇为还原剂制备的涂层综合性能优异,最佳用量分别为60 g/L和20 g/L。涂层由多层片状锌粉和黏结物质组成,在不同腐蚀环境中均表现出优异的耐蚀性能。热力学计算结果表明,4种还原剂固化反应均可在烧结温度下进行。

关键词 锌基水性涂层还原剂结合强度耐蚀性能固化机理    
Abstract

The effects of four kinds of reductants, acrylic acid, succinic acid, glycerol, glucose, and their contents  on the bonding strength and anticorrosion of zinc-based   waterborne anticorrosive coatings were studied through    adhesive tape test, ammonium nitrate solution accelerated corrosion method, electrochemical measurement, thermogravimetric and comparison with zinc plating. The experimental results indicate that variety and content of the reductants had markedly influenced on the bonding strength and corrosion resistance of coatings. Using acrylic acid as the reductant the coatings had high bonding strength in a large adding range, and it can hold high bonding strength when the other reductants had low content. The corrosion resistance time increases firstly, and then decreases with the increment of reductant content. The coatings with acrylic acid or glycerol as reductant had good comprehensive properties, optimal dosage were 60 g/L and 20 g/L respectively. The coatings are composed of multilayer flake zinc powder and cement substance, and the corrosion resistance performances are obviously superior to zinc plating under different environmental conditions. Moreover, the formation mechanism of coatings is analyzed, thermodynamical calculation shows that all the cure reactions using these reductants can proceed automatically at solidifying temperature.

Key wordszinc-based waterborne coating    reductant    bonding strength    corrosion resistance    solidification mechanism
收稿日期: 2007-11-19     
ZTFLH: 

TG174.41

 
基金资助:

国家自然科学基金项目(50432020);国家重点基础研究发展计划(973计划)资助项目(2007CB607603)

通讯作者: 赵麦群     E-mail: zhaomq@mail.xaut.edu.cn
作者简介: 李涛,男,1982年生,硕士生,研究方向为新型环保涂料

引用本文:

李涛 赵麦群 赵阳 郭佳. 还原剂对锌基水性耐蚀涂层性能的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 230-234.
LI Shou, DIAO Mai-Qun, DIAO Yang, GUO Jia. EFFECTS OF THE REDUCTANT ON THE ZINC-BASED WATERBORNE ANTICORROSIVE COATING. J Chin Soc Corr Pro, 2009, 29(3): 230-234.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I3/230

[1] Gheno F. Clean processes-alternatives to electroplating[J]. T. I.Met. Finish, 1996, 74(5): 7-10
[2] Gao Q. Dacromet-one kind of excellent new coating[J]. Electroplat. Pollut.Control, 1995, 15(5): 29-30
    (高勤. 达克罗--一种优秀新型涂层[J]. 电镀与环保, 1995, 15(5): 29-30)
[3] Alain Sontang. Zinc/aluminum coating for corrosion protection[J].Finishing, 1992, 83(6): 38-42
[4] Su H J, Zhao Q, Chen X P. Research on composition and structure of Zn-Cr coating[J]. Surf. Technol., 2002, 31(5): 12-15
    (苏红军, 赵旗, 陈小平. 水系锌铬膜涂层组成结构的研究[J]. 表面技术, 2002, 31(5): 12-15)
[5] Dong J Z. 12 testing technology of Zn-Cr coating[J]. Mater.Prot., 2005, 38(8): 67-68
    (东建中. 锌铬膜常用检测技术12项[J]. 材料保护, 2005, 38(8): 67-68)
[6] Liu B, Li Y, Wang F H. Study on the effect of zinc pigments size on the electrochemical behavior of organic zinc-rich coatings[J]. J. Chin.Soc. Corros. Prot., 2003, 23(6): 350-354
    (刘斌, 李瑛, 王福会. 锌粉颜料尺寸对有机富锌涂层电化学行为的影响[J]. 中国腐蚀与防护学报, 2003, 23(6): 350-354)
[7] Xie D M, Hu J M, Tong S P, et al. The development of zinc-rich paints[J]. J. Chin. Soc. Corros. Prot., 2004, 24(5): 314-320
    (谢德明, 胡吉明, 童少平等. 富锌漆研究进展[J]. 中国腐蚀与防护学报, 2004, 24(5): 314-320)
[8] Abreu C M, Izquierdo M, Keddam M, et al.Electrochemical behavior of zinc-rich epoxy paints in 3% NaClsolution[J]. Electrochim. Acta, 1996, 41(15): 2405-2415
[9] Department of Inorganic Chemistry, Dalian University of Technology. Inorganic Chemistry(5th edition)[M].Beijing: Higher Education Press, 2006: 565-570
    (大连理工大学无机化学教研室编. 无机化学(第五版)[M]. 北京: 高等教育出版社, 2006: 565-570)
[10] Han S M, Zheng Y Z, Yu S X, et al. Study on microstructure and the mechanism of zinc-aluminum conversion coating [J]. J. Chin. Soc. Corros. Prot., 2002, 22(5): 269-273
     (韩树民, 郑炀曾, 于升学等. 锌铝铬转化膜微观结构与成膜机理研究[J]. 中国腐蚀与防护学报, 2002, 22(5): 269-273)
[11] Wei J F, et al (Translated), John A Dean(ed.).Lange's Handbook of Chemistry(2nd edition)[M].Beijing: Science Press, 2003
     (魏俊发等译, (美) J$\cdot$A$\cdot$迪安主编. 兰氏化学手册(第二版)[M]. 北京: 科学出版社, 2003)

[1] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[2] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[3] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[4] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[5] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[6] 陈磊,裴志亮,肖金泉,宫骏,孙超. 磁过滤电弧离子镀制备TiAlN涂层的结构与性能表征[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[7] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[8] 徐相英,葛芳芳,李朋,舒瑞,黄峰,李谋成. 非晶Ti-B基涂层的力学和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
[9] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[10] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[11] 胡新芳, 李辛庚, 樊志彬, 王晓明, 王学刚. 新型Zn-22Al-Mg-Re合金涂层性能研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 521-526.
[12] 王淑艳,夏永平 刘 莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240.
[13] 王应发,黄国胜,程旭东,李相波,邢路阔,郭娟,马焱. 热喷涂Zn-Ni复合涂层在海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.
[14] 肖正涛,李相波,王佳,黄国胜,周雄. 冷喷涂铬锆铜涂层在海水中的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(1): 18-22.
[15] 周贤良,朱敏,薛会斌,彭新元,叶志国. 热轧带钢的初期耐大气腐蚀性能[J]. 中国腐蚀与防护学报, 2011, 31(2): 139-144.