Please wait a minute...
中国腐蚀与防护学报
  本期目录 | 过刊浏览 |
纳米Al2O3改性SiBCN基陶瓷高温粘接剂的制备与性能研究
王海卫1,常森2,栾新刚2,王稹3,李彦樟3,陈建利3,张计荣3,韩明3,丘丹圭3
1. 中核霞浦核电有限公司
2. 西北工业大学
3. 中国辐射防护研究院
纳米Al2O3改性SiBCN基陶瓷高温粘接剂的制备与性能研究
全文: PDF(1024 KB)  
摘要: 为提高聚硅硼氮烷(PSNB)胶粘剂的热稳定性和粘接强度,采用纳米Al2O3、聚硅氧烷(PSO)、聚硼硅氮烷(PBSZ)和TiB2来改性PSNB,并用于粘接SiC陶瓷片。本文采用SEM和XRD等测试方法,分析了改性粘接剂的微观结构和物相组成,研究了裂解温度和纳米Al2O3对SiBCN陶瓷的微观结构和粘接强度的影响,揭示了纳米Al2O3对SiBCN陶瓷的强韧化机理。在120℃空气中固化2h,然后在1000℃空气中裂解2h后,PPPT和PPPTA室温粘接强度最高达到11.23MPa和15.91MPa,更重要的是,800℃空气中的高温剪切强度达到10.4MPa和12.1MPa。结果表明,纳米Al2O3一方面可以有效抑制粘接层的体积收缩,另一方面可以有效抑制玻璃相在高温时的挥发。
关键词 聚硅硼氮烷纳米Al2O3玻璃相高温粘接强度    
Abstract:In order to improve the thermal stability and adhesion strength of PSNB adhesive, nano-Al2O3, PSO, PBSZ and TiB2 were used to modify PSNB, and the modified PSNB was used for joining SiC ceramic discs. In this paper, the microstructure and phase composition of the modified adhesive were analyzed by SEM and XRD. The effects of pyrolysis temperature and nano-Al2O3 on the microstructure and adhesion strength of SiBCN ceramics were investigated. The strengthening and toughening mechanism of nano-Al2O3 to SiBCN ceramics was revealed. After curing in air at 120°C for 2h and then cracking in air at 1000°C for 2h, the room temperature adhesion strength of PPPT and PPPTA is up to 11.23MPa and 15.91MPa, respectively, and more importantly, the high temperature (in air at 800°C) shear strength reaches 10.4MPa and 12.1MPa, respectively. The results show that nano-Al2O3 can effectively inhibit the volume shrinkage of the adhesive layer, and on the other hand can effectively inhibit the volatilization of the glass phase at high temperature.
Key wordsPolyborosilazane    Nano-Al2O3    Glass    High temperature strength
收稿日期: 2019-06-21     
通讯作者: 王海卫   

引用本文:

王海卫 常森 栾新刚 王稹 李彦樟 陈建利 张计荣 韩明 丘丹圭. 纳米Al2O3改性SiBCN基陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, .

链接本文:

https://www.jcscp.org/CN/Y0/V/I/0

[1] 王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[2] 崔学军,杨瑞嵩,李明田. 纳米Al2O3掺杂AZ31B镁合金表面微弧氧化膜的结构与性能[J]. 中国腐蚀与防护学报, 2016, 36(1): 73-78.