Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (2): 137-150    DOI: 10.11901/1005.3093.2019.324
  研究论文 本期目录 | 过刊浏览 |
Cu含量和烧结温度对Fe-Cu基粉末冶金复合材料摩擦磨损性能的影响
石磊1,赵齐1(),罗成1,陈浩1,杨继彪1,张晓东2,李贤斌2
1. 湖北汽车工业学院材料科学与工程学院 十堰 442002
2. 东风汽车零部件(集团)有限公司东风粉末冶金公司 十堰 442700
Effect of Copper Content and Sintering Temperature on Friction and Wear Properties of Powder-metallurgical Fe-Cu Based Composites
SHI Lei1,ZHAO Qi1(),LUO Cheng1,CHEN Hao1,YANG Jibiao1,ZHANG Xiaodong2,LI Xianbin2
1. School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002,China
2. Dongfeng Powder Metallurgy Company, Dongfeng Motor Parts and Components (Group) Co. Ltd. , Shiyan 442700, China
引用本文:

石磊,赵齐,罗成,陈浩,杨继彪,张晓东,李贤斌. Cu含量和烧结温度对Fe-Cu基粉末冶金复合材料摩擦磨损性能的影响[J]. 材料研究学报, 2020, 34(2): 137-150.
Lei SHI, Qi ZHAO, Cheng LUO, Hao CHEN, Jibiao YANG, Xiaodong ZHANG, Xianbin LI. Effect of Copper Content and Sintering Temperature on Friction and Wear Properties of Powder-metallurgical Fe-Cu Based Composites[J]. Chinese Journal of Materials Research, 2020, 34(2): 137-150.

全文: PDF(8934 KB)   HTML
摘要: 

研究了铜含量和烧结温度对Fe-Cu基粉末冶金复合材料摩擦磨损性能影响。结果表明,Cu含量为20%~60%,随着Cu含量的提高耐磨性能先随之提高,Cu含量为40%时耐磨性能达到最优值,平均摩擦系数最小为0.172,磨损量为0.007 g;随着Cu含量的进一步提高耐磨性能反而降低。烧结温度为1096~1296℃时,随着烧结温度的提高耐磨性能随之提高,温度达到1196℃时耐磨性能达到最优,平均摩擦系数最小为0.123,磨损量为0.0018 g;烧结温度再提高耐磨性能反而降低。在最优工艺烧结过程中液相Al分别与Fe和Cu基体生成固溶体,使材料的密度和强度提高。MnS分解后,Mn与Fe基体生成固溶体,部分C也与Fe基体生成固溶体,两者促进了合金的固溶强化。其余的单质C,使合金的润滑性能提高。烧结后,Cu晶粒组织变得均匀细小,在Fe基中以网状形式存在。以上各组元的特殊作用使Fe-Cu基复合耐磨材料具有优异的耐磨性能。

关键词 复合材料Fe-Cu基摩擦磨损铜含量烧结温度    
Abstract

The effect of Cu content and sintering temperature on the friction and wear properties of powder-metallurgical Fe-Cu based composites was investigated. The results show that the wear resistance first increases with the increase of Cu content within a range of 20%~60% Cu. Then the wear resistance reaches the optimum with the average friction coefficient of 0.172 and wear loss of 0.007 g for the composite with 40% Cu. However, the wear resistance begins to decrease when the Cu content further increases. Similarly, the wear resistance first increases with the increase of sintering temperature within the range of 1096~1296oC. Then the wear resistance achieves the optimum with the average friction coefficient of 0.123 and wear loss of 0.0018 g for the composite sintered at 1196oC. When sintering at higher temperatures, the wear resistance decreases again. During sintering with optimal process parameters, the molten Al may form solid solution with Fe and Cu, which improves the density and strength of the composite. Meanwhile, the decomposition of MnS yields atomic Mn, which mainly forms solid solution with Fe. Also, a part of C in the composite also forms solid solution with Fe. The above facts may in turn generate the solid solution strengthening of the Fe-Cu based alloy. Besides, there exists residual elemental carbon in the Fe-Cu based alloy, which enhances the lubrication of the alloy. After sintering, the grains of Cu become finer presenting as a network in the Fe based matrix. The excellent wear resistance of Fe-Cu based composite can be attributed to the special functions of the individual component of the composite.

Key wordscomposite    Fe-Cu based    friction and wear    Cu content    sintering temperature
收稿日期: 2019-07-01     
ZTFLH:  TF124  
基金资助:湖北汽车工业学院博士科研启动基金(BK201702);湖北省自然科学基金(2018CFB177);汽车动力传动与电子控制湖北省重点实验室开放基金(湖北汽车工业学院)及大学生创新创业训练项目(DC2019052)
作者简介: 石磊,男,1997年生,学士
图1  不同铜含量的铁-铜基材料的密度曲线
图2  烧结温度不同的铁-铜基材料的密度曲线
图3  铁-铜基材料的显微硬度与铜含量的关系
图4  铁-铜基材料的显微硬度与烧结温度的关系
图5  不同铜含量的铁-铜基材料抛光后未腐蚀时的金相组织
图6  铜含量不同的铁-铜基材料中Fe、Cu晶粒的平均尺寸和孔隙大小
图7  烧结温度不同的铁-铜基材料抛光后未腐蚀时的金相组织
图8  烧结温度不同的铁-铜基材料中Fe、Cu晶粒的平均尺寸和孔隙大小
图9  不同铜含量材料的摩擦因数
图10  烧结温度不同的材料的摩擦因数
图11  铜含量为40%的铁-铜基材料在1196℃烧结1 h前后的XRD谱
图12  铜含量为40%试样烧结前的元素面扫描分布形貌
图13  铜含量为40%试样在1196℃烧结1 h后的元素扫描分布形貌
图14  铜-铁二元合金相图
图15  不同铜含量摩擦材料的磨损形貌
图16  不同烧结温度摩擦材料的磨损形貌
[1] Wells T C. Friction materials in aerospace application [J]. Powder Metallurgy, 1992, 5(4): 257
[2] Cho K H, Jang H, Hong Y S, et al. The size effect of zircon particles on the friction characteristics of brake lining materials [J].Wear, 2008, 264(3-4): 291
[3] Yang M. Effects of Al and Zr on microstructure and properties of Fe-18Cu-based friction materials for powder metallurgy [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 1
[3] (杨明. Al、Zr对Fe-18Cu基粉末冶金摩擦材料组织和性能的影响 [D]. 南京: 南京航空航天大学, 2011: 1)
[4] Yao P P, Xiong X, Huang B Y, et al. Effects of copper content on friction and wear properties of ferro-based powder metallurgy aviation brake materials [J]. Nonmetallic Minerals,2001, 24(4): 52
[4] (姚萍屏, 熊 翔, 黄伯云等. 铜含量对铁基粉末冶金航空刹车材料摩擦磨损性能的影响 [J]. 非金属矿, 2001, 24(4): 52)
[5] Ren J, Cui G J, Lu Z X. Experimental study on tribological characterstrics of friction plate for belt conveyor [J]. Science Technology and Engineering, 2017, 17(30): 223
[5] (任剑, 崔功军, 鲁张祥. Cu-Fe基摩擦片摩擦磨损性能的实验研究 [J]. 科学技术与工程, 2017, 17(30): 223)
[6] Zhao X, Hao J J, Peng K, et al. Friction and wear behavior of Cu-based P/M friction materials with Cr-Fe as friction components. [J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(6): 935
[6] (赵翔, 郝俊杰, 彭坤等. Cr-Fe为摩擦组元的铜基摩擦材料的摩擦磨损性能 [J]. 粉末冶金材料科学与工程, 2014, 19(6): 935)
[7] Lu Z Q, Zhan Z G. Preparation and properties of powdered sintered Fe-Cu multielement alloy [D]. Qinhuangdao: Yanshan University, 2015: 1
[7] (吕自强, 战再吉. 粉末烧结Fe-Cu多元合金的制备及性能研究 [D].秦皇岛: 燕山大学, 2015: 1)
[8] Kovalchenko A M, Fushchich O.I, Danyluk S. The tribological properties and mechanism of wear of Cu-based sintered powder materials containing molybdenum disulfide and molybdenum diselenite under unlubricated sliding against copper [J].Wear, 2012, 106: 290
[9] Wei J D, Chen H, Liu X C. Effect of graphite on the microstructure and tribological properties of copper matrix friction material used in Wind turbine [J]. Lubrication and Engineering, 2013, 38(8): 62
[9] (魏敬丹, 陈华, 刘晓春. 石墨对风电组用铜基材料组织及摩擦磨损性能的影响 [J]. 润滑与密封, 2013, 38(8): 62)
[10] Xiao Y L, Yao P P, Gong T M, et al. Effects of graphite and MoS2 ratio on performances of space docking friction material [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(9): 2539
[10] (肖叶龙, 姚萍屏, 贡太敏等. 石墨与MoS2配比对空间对接用摩擦材料性能的影响 [J]. 中国有色金属学报, 2012, 22(9): 2539)
[11] Yao P P, Xiong X, Huang B Y. Present situation and development of powder metallurgy airplane brake materials [J]. Powder Metallurgy Industry, 2000, 10(6): 36
[11] (姚萍屏, 熊 翔, 黄伯云. 粉末冶金航空刹车材料的应用现状与发展 [J]. 粉末冶金工业, 2000, 10(6): 36)
[12] Li W X, Jiao B Q, Li J S, et al. Powder metallurgy brake pad development and test research of high speed train [J]. Railway Locomotive & Car, 2011, 31(5): 100
[12] (李万新, 焦标强, 李继山等. 高速动车组粉末冶金闸片研制及试验研究 [J]. 铁道机车车辆, 2011, 31(5): 100)
[13] Bai T Q, Wang X F, Zhong Z G, et al. Effects of friction components on friction properties of powder metallurgy friction materials [J]. Materials Science and Engineering of Powder Metallurgy, 2006, 11(6): 345
[13] (白同庆, 王秀飞, 钟志刚等. 摩擦组元对粉末冶金摩擦材料摩擦性能的影响 [J]. 粉末冶金材料科学与工程, 2006, 11(6): 345)
[14] Wang X F, Xu G S, Han J, et al. Effect of zirconium dioxide addition on friction and wear properties of Cu-based friction materials [J]. Powder Metallurgy Technology, 2013, 47(1): 22
[14] (王秀飞, 许桂生, 韩娟等.添加ZrO2对铜基摩擦材料摩擦磨损性能的影响 [J]. 粉末冶金技术, 2013, 47(1): 22)
[15] Yin Y G, Zheng Z X, Ma S B, Liu Kun. Influence of temperature on friction and wear properties of Cu-matrix/graphite self-lubricating composite materials [J]. The Chinese Journal of Nonferrous Metals, 2004, 14(11), 1856
[16] Zhou H B, Yao P P, Xiao Y L, et al. Interface formation and wear mechanism between characteristic friction components and base components of Cu-based powder metuallurgy friction materials [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 328
[16] (周海滨, 姚萍屏, 肖叶龙等. 铜基粉末冶金摩擦材料特征摩擦组元与基体的界面形成及磨损机理 [J]. 中国有色金属学报, 2016, 26(2): 328)
[17] Yao P P. High Performance Powder Metallurgy Brake Friction Materials [M]. Changsha: Central South University Press, 2015
[17] (姚萍屏. 高性能粉末冶金制动摩擦材料 [M]. 长沙: 中南大学出版社, 2015)
[18] Wang G Z. Introduction to Materials Science and Engineering [M]. Beijing: Machinery Industry Press, 2006
[18] (王高潮. 材料科学与工程导论 [M]. 北京: 机械工业出版社, 2006)
[19] Li W Q. Research on aluminium bronze matrix broke pads for high-speed tranins [J]. Material & Heat Treatment, 2008, 37 (16): 34
[19] (李万全. 高速列车铝青铜基制动闸片的研制 [J]. 材料热处理技术, 2008, 37(16): 34)
[20] Liu J J. Principle of Material Wear and its Wear Resistance [M]. Beijing: Tsinghua University Press, 1993
[20] (刘家浚. 材料磨损原理及其耐磨性 [M]. 北京: 清华大学出版社, 1993)
[21] Chen S B, Wang Y R. Metal Electron Microanalysis [M]. Beijing: Machinery Industry Press, 1982
[21] (陈世补, 王永瑞. 金属电子显微分析 [M]. 北京: 机械工业出版社, 1982)
[22] Huang R F, Liu S Y. Study of development and manufacturing technology of sintered metal materials [J]. Ordnance Materials Science and Engineering, 1999, 22(1): 65
[22] (黄瑞芬, 刘淑英. 烧结金属摩擦材料及其工艺研究的发展 [J]. 兵器材料科学与工程, 1999, 22(1): 65)
[23] Nash-Asuncion De·Baihe, Zhang Y.Hot pressing sintering-a new approach to understand sintering mechanism [J]. Chinese Journal of Inorganic Materials, 1998(4): 3
[23] (德·白鹤纳施—阿松朗, 张 颖. 热压烧结—理解烧结机理的新途径 [J]. 无机材料学报, 1998(4): 3)
[24] Zhou B. Study on the process of preparing SiC reinforced Al matrix composites by microwave sintering [D] Kunming: Kunming University of Science and Technology, 2017, 1
[24] (周博. 微波烧结制备SiC增强Al基复合材料的工艺研究 [D]. 昆明: 昆明理工大学, 2017, 1)
[25] Yuan G Z, Fan Y.Effects of SiO2 and B4C combination on properties of iron-copper based friction materials [J]. Powder Metallurgy Materials Science and Engineering, 1999, 4(3): 224
[25] (袁国洲, 樊 毅. SiO2和B4C组合对铁铜基摩擦材料性能的影响 [J]. 粉末冶金材料科学与工程, 1999, 4(3): 224)
[26] Zhang M L, Zhu S G, Zhao M W. Effercts of sintering process on properties of WC/MgO nano-composite [J]. Hot Working Technology, 2010, 33(10): 106
[26] (张梅琳, 朱世根, 赵明威. 烧结工艺对纳米WC/MgO复合材料性能的影响 [J]. 热加工工艺, 2010, 39(10): 106)
[27] Wang Y. Study on manganese zinc ferrite with wide temperature and low power consumption [D]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2012, 1
[27] (王 勇. 宽温低功耗锰锌铁氧体的研究 [D]. 杭州: 杭州电子科技大学, 2012, 1)
[28] Senouci A, Frene J, Zaidi H. Wear mechanism in graphite-copper electrical sliding contact [J]. Wear, 1999, 255(98): 949
[29] Sheng H C, Xiong X, Yao P P. E Effect of sintering temperature on abrasion behavior of Cu-based P/M aircraft brake materials [J]. Non-Metallic Mins, 2006, 29(1): 52
[29] (盛洪超, 熊翔, 姚萍屏. 烧结温度对铜基粉末冶金航空刹车材料摩擦磨损行为的影响 [J]. 非金属矿, 2006, 29(1): 52)
[30] Qiu W Q, Dasary A, Mai Y W. Improvement in adhesion of diamond film on Cu substrate with an inlay structure interlayer [J]. Surface & Coatings Technology, 206 (2011): 224
[31] Qiu W Q, Liu Z W, He L X, Zeng D C, Mai Y W. Improved interfacial adhesion between diamond film and copper substrate using a Cu(Cr)-diamond composite interlayer [J]. Materials Letters, 2012, 81
[32] Fu C Q. Study on the structure and properties of iron-clad copper (Fe-20Cu) based friction materials [D]. Dalian: Dalian Maritime University, 2012, 1
[32] (付传起. 铜包铁(Fe-20Cu)基摩擦材料的组织及性能研究 [D]. 大连: 大连海事大学, 2012, 1)
[33] Nekatibeb F, Annamalai A R, Upadhyaya A. Effect of Copper and Graphite Addition on Sinterability of Iron [J]. Transactional of the Indian Institute of Metals,2011, 64: 81
[34] Zhao Q, Dai J M, Wei C B, et al. Thick titanium interlayer remitting stress in diamond films deposited on copper substrate by hot filaments chemical vapor deposition [J]. Surface Technology, 2013, 42(5): 19
[34] (赵 齐, 代江明, 韦春贝等. 厚钛过渡层缓解铜基上热丝CVD金刚石薄膜内应力 [J]. 表面技术, 2013, 42(5): 19)
[35] Zhao Q, Wei C B, Dai J M, al et. Diamond composite materials used in LED radiator [J]. Ordance Materials Science and Engineering, 2013, 36(6): 138
[35] (赵 齐, 韦春贝, 代江明等. 用于LED散热基片的金刚石复合材料的研究 [J]. 兵器材料科学与工程, 2013, 36(6): 138)
[36] Wang H. Study on Fe-Cu composite prepared by powder metallurgy and its properties [D]. Qinhuangdao: Yanshan University, 2016, 1
[36] (王 昊. 粉末冶金制备Fe-Cu复合材料及其性能研究 [D]. 秦皇岛: 燕山大学, 2016, 1)
[37] Mao K. Influence of sintering process on the properties of copper-based powder metallurgy friction materials [D]. Chengdu: Southwest Jiaotong University, 2011, 1
[37] (毛 凯. 烧结工艺对铜基粉末冶金摩擦材料性能的影响 [D]. 成都: 西南交通大学, 2011, 1)
[38] Osterle W, D?rfel I, Prietzel C, et al. A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-disc test [J]. Wear, 2009, 267(5-8): 781
[39] Osterle W, Klo? H, Urban I, et al. Dmitriev Towards a better understanding of brake friction Materials [J]. Wear, 2007, 263(7): 1189
[40] Leal R M, Leit?o C, Loureiro A, et al. Material flow in heterogeneous friction stir welding of thin aluminum sheets: Effect of shoulder geometry [J]. Material Science and Engineering, 2008, 489(1-2): 384
[1] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.