Please wait a minute...
腐蚀科学与防护技术  2017, Vol. 29 Issue (3): 220-226    DOI: 10.11903/1002.6495.2016.170
  研究报告 本期目录 | 过刊浏览 |
Si3N4-hBN复相陶瓷在氢氟酸和冰晶石熔盐中的腐蚀行为研究
张昌松,刘强(),陈威
陕西科技大学机电工程学院 西安 710021
Corrosion Behavior of Si3N4-hBN Composite Ceramics in HF Solutions and Cryolite Molten Salt
Changsong ZHANG,Qiang LIU(),Wei CHEN
College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
全文: PDF(4355 KB)   HTML
摘要: 

利用热压烧结工艺制备了不同hBN含量的Si3N4-hBN复相陶瓷,研究了Si3N4陶瓷和hBN质量分数为10%的Si3N4-hBN复相陶瓷,在40 ℃不同摩尔浓度的HF溶液和850 ℃冰晶石熔盐中的腐蚀行为。结果表明:Si3N4基陶瓷在酸和熔盐中腐蚀时,都表现为失重现象。其中,在HF溶液中的腐蚀格外严重,随着腐蚀液浓度的升高,腐蚀速率逐渐增大,失重愈发明显,Si3N4-10%hBN复相陶瓷较Si3N4陶瓷腐蚀严重;在冰晶石熔盐中的腐蚀,前20 h时Si3N4-10%hBN复相陶瓷的腐蚀速率远高于Si3N4陶瓷,当20 h后Si3N4陶瓷腐蚀速率逐渐超过Si3N4-10%hBN复相陶瓷,最终的腐蚀速率表现为Si3N4-10%hBN复相陶瓷高于Si3N4陶瓷。腐蚀失重原因归为两点:腐蚀试样本身的致密度和原始形貌以及腐蚀试样本身Si3N4的含量。

关键词 复相陶瓷腐蚀行为氢氟酸冰晶石熔盐    
Abstract

Si3N4-hBN composite ceramics with different hBN content were prepared by hot pressed sintering process. Then the corrosion behavior of Si3N4 ceramic and Si3N4-10% (mass fraction) hBN composite ceramics was studied in HF solution with various molarities at 40 ℃and cryolite molten salt at 850 ℃ respectively. The results show that that the Si3N4 ceramics were suffered from significant corrosion in the above acid solution and molten. The corrosion of the two type ceramics in HF solutions was particularly serious, and their corrosion rate increased gradually with the increasing HF concentration, while the corrosion of Si3N4-10%hBN ceramics was much serious than that of Si3N4 ceramics. In cryolite molten salt, the corrosion rate of Si3N4-10%hBN was much higher than that of Si3N4 ceramic for the initial 20 h, hereafter the corrosion rate of Si3N4 ceramics gradually exceeded that of Si3N4-10%hBN ceramics, and in the final corrosion stage the corrosion rates of the two type ceramics reversed again. It is thought that the corrosion performance of the ceramics may be subjected to the microstructure and the Si3N4 content of the as prepared ceramics.

Key wordscomposite ceramics    corrosion behavior    HF solution    cryolite molten salt
收稿日期: 2016-07-11     
基金资助:国家自然科学基金 (51405278),陕西科技大学引进博士科研启动基金 (BJ11-01),陕西省自然科学基础研究计划 (2015JM5242) 和特种材料及制备技术四川省高校重点实验室开放基金 (szjj2015-088)

引用本文:

张昌松,刘强,陈威. Si3N4-hBN复相陶瓷在氢氟酸和冰晶石熔盐中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2017, 29(3): 220-226.
Changsong ZHANG, Qiang LIU, Wei CHEN. Corrosion Behavior of Si3N4-hBN Composite Ceramics in HF Solutions and Cryolite Molten Salt. Corrosion Science and Protetion Technology, 2017, 29(3): 220-226.

链接本文:

https://www.cspt.org.cn/CN/10.11903/1002.6495.2016.170      或      https://www.cspt.org.cn/CN/Y2017/V29/I3/220

图1  未腐蚀试样表面形貌和Si3N4-10%hBN陶瓷表面气孔孔径统计结果
图2  复合陶瓷在HF溶液中的腐蚀行为
图3  复合陶瓷在HF溶液中的腐蚀表面形貌
图4  腐蚀形貌的EDAX分析
图5  腐蚀产物的XRD谱
图6  复合陶瓷在熔融电解质中的腐蚀行为
图7  复合陶瓷在冰晶石熔盐中的腐蚀表面形貌
图8  腐蚀形貌EDAX分析
图9  腐蚀产物的XRD谱
[1] Huan C T, Li Q, Jiang D Y.Application of Si3N4 and research progress on corrosion behavior[J]. Adv. Ceram., 2011, 32(3): 3
[1] (郇昌天, 李强, 蒋丹宇. 氮化硅陶瓷的应用和酸腐蚀研究进展[J]. 现代技术陶瓷, 2011, 32(3): 3)
[2] Chen Y J, Li Q, Jiang D Y.Corrosion study of silicon nitride ceramics in molten salt[J]. Adv. Ceram., 2010, 31(3): 3
[2] (陈银娟, 李强, 蒋丹宇. 氮化硅陶瓷的熔盐腐蚀研究进展[J]. 现代技术陶瓷, 2010, 31(3): 3)
[3] Wu R R.Ceramic roller bearing for magnetic drive pump[J]. Mech. Electr. Equip., 1996, (2): 40
[3] (吴仁荣. 用于磁力驱动泵的陶瓷滚动轴承[J]. 机电设备, 1996, (2): 40)
[4] Wang X D, Tong X Y.An experimental study of bearings of magnetic-drive pump[J]. J. Gansu Sci., 2008, 20(3): 96
[4] (王向东, 童小育. 磁力泵轴承耐磨损抗腐蚀的实验研究[J]. 甘肃科学学报, 2008, 20(3): 96)
[5] Sato T, Tokunaga Y, Endo T, et al.Corrosion of silicon nitride ceramics in aqueous HF solutions[J]. J. Mater. Sci., 1988, 23: 3440
[6] Sato T, Tokunaga Y, Endo T, et al.Corrosion of silicon nitride ceramics in aqueous hydrogen chloride solutions[J]. J. Am. Ceram. Soc., 1988, 71: 1074
[7] Sharkawy S W, El-Aslabi A M. Corrosion of silicon nitride ceramics in aqueous HCl and HF solutions at 27~80 ℃[J]. Corros. Sci., 1998, 40: 1119
[8] Monteverde F, Mingazzini C, Giorgi M, et al.Corrosion of silicon nitride in sulphuric acid aqueous solution[J]. Corros. Sci., 2001, 43: 1851
[9] Schilm J, Herrmann M, Michael G.Leaching behaviour of silicon nitride materials in sulphuric acid containing KF[J]. J. Eur. Ceram. Soc., 2004, 24: 2319
[10] Schilm J, Herrmann M, Michael G.Corrosion of Si3N4-ceramics in aqueous solutions: part 2. Corrosion mechanisms in acids as a function of concentration, temperature and composition[J]. J. Eur. Ceram. Soc., 2007, 27: 3573
[11] Herrmann M, Schilm J, Michael G, et al.Corrosion of silicon nitride materials in acidic and basic solutions and under hydrothermal conditions[J]. J. Eur. Ceram. Soc., 2003, 23: 585
[12] Cao S H, Weng D Q, Huang H P, et al.The corrosion behaviour of β-Sialon/SiC composites in cryolite molten solution[J]. J. Cent. South Inst. Min. Metall., 1994, 25: 202
[12] (曹顺华, 温东强, 黄和平等. β-Sialon/SiC复合材料在冰晶石熔液中的腐蚀行为[J]. 中南矿冶学院学报, 1994, 25: 202)
[13] Han B, Zhang H J, Zhong X C.Study on the cryolite corrosion resistance of bauxite based β-Sialon bonded corundum/SiC composites[J]. Bull. Chin. Ceram. Soc., 2007, 26: 680
[13] (韩波, 张海军, 钟香崇. 矾土基β-Sialon结合刚玉-碳化硅复合材料抗冰晶石侵蚀性能的研究[J]. 硅酸盐通报, 2007, 26: 680)
[14] Li S B, Lv Z L, Gao J Q, et al.Corrosion behavior of silicon carbide in molten cryolite[J]. Chin. J. Nonferrous Met., 2003, 13: 1447
[14] (李世斌, 吕振林, 高积强等. 碳化硅材料在冰晶石熔液中的侵蚀行为[J]. 中国有色金属学报, 2003, 13: 1447)
[15] Ge S, Yin Y C.Study on the corrosion mechanisim of Si3N4 bonded SiC materials in aluminum reduction cell[J]. Light Met., 2008, (5): 58)
[15] (葛山, 尹玉成. Si3N4结合SiC材料在铝电解槽中的损毁机理研究[J]. 轻金属, 2008, (5): 58)
[16] Skybakmoen E, Gudbransen H, Stoen L I.Chemical resistance of sidelining materials based on SiC and carbon in cryolitic melts-a laboratory study[J]. J. Light Met., 1999, 128: 215
[17] Zhang L P, Yu X J, Li Y H, et al.Preparation of Si3N4-SiC material and research on the corrosion behavior of Si3N4-SiC material in cryolite melt solution[J]. Bull. Chin. Ceram. Soc., 2006, 25(5): 176
[17] (张丽鹏, 于先进, 李玉怀等. 氮化硅结合碳化硅材料的制备及在冰晶石融盐中的腐蚀行为研究[J]. 硅酸盐通报, 2006, 25(5): 176)
[1] 杨旭,孙福洋,李丹平. X100管线钢鹰潭土壤模拟溶液中腐蚀行为的研究[J]. 腐蚀科学与防护技术, 2019, 31(6): 615-621.
[2] 胡立坤,谢盼平,袁思成,许登峰,彭智,谢阿禧,郑峰. 阳极氧化钽酸锂薄膜在NaOH溶液中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2019, 31(4): 379-386.
[3] 杜明,朱世东,张骁勇,李金灵,宋少华. 含Cr低合金钢的CO2腐蚀产物膜形成及机理研究进展[J]. 腐蚀科学与防护技术, 2019, 31(3): 335-342.
[4] 马世朝,李玲毅,姚晓艳,原瑞迪,李红强,饶隆茂,程伟丽. Sn含量对轧制Mg-6Bi-Sn合金组织演变和腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2019, 31(1): 19-26.
[5] 朱敏, 聂轮, 袁永锋, 郭绍义, 尹思敏, 俞高红. 高强度弹簧钢60Si2CrVA与SAE9254在NaCl溶液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2018, 30(5): 481-488.
[6] 赵国仙, 王园园, 路永新. 模拟高矿化度水条件下核桃壳过滤器内构件Q345R钢的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2018, 30(5): 467-474.
[7] 逄旭光, 郭一二, 迟嘉鹏, 梁平, 史艳华, 赵艳. 2205双相不锈钢和304不锈钢在氢氟酸溶液中缝隙腐蚀敏感性比较[J]. 腐蚀科学与防护技术, 2018, 30(4): 362-368.
[8] 梁志远, 于淼, 桂雍, 赵钦新. 高温CO2环境中耐热合金腐蚀行为研究[J]. 腐蚀科学与防护技术, 2018, 30(3): 237-243.
[9] 安朋亮, 宋菲, 梁平, 秦华, 赵艳, 逄旭光. 时效时间对2205双相不锈钢抗氢氟酸腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2017, 29(4): 421-425.
[10] 逄旭光,梁平,张云霞,史艳华,赵艳,刘峰. 2205和316L不锈钢在氢氟酸中的电化学腐蚀行为[J]. 腐蚀科学与防护技术, 2016, 28(6): 537-542.
[11] 沈雪青,张玉勤,蒋业华,周荣. SPS烧结Ti-35Nb-7Zr-5Ta合金在Hank's模拟人工体液中的电化学腐蚀行为[J]. 腐蚀科学与防护技术, 2016, 28(6): 543-548.
[12] 汪峰,Thomas M. Devine. 核电站蒸汽发生器传热管用Inconel合金在高温高压水中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2015, 27(1): 19-24.
[13] 曹晓恩,杨吉春,杨昌桥,周莉,肖茂元. 稀土Ce对X80钢土壤模拟溶液腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2014, 26(3): 211-217.
[14] 许述剑,刘小辉,张皓智,李英. 高含硫天然气净化过程中的典型腐蚀行为研究[J]. 腐蚀科学与防护技术, 2014, 26(3): 273-277.
[15] 范强强,华丽. 2205双相不锈钢腐蚀行为的影响因素[J]. 腐蚀科学与防护技术, 2014, 26(1): 178-182.