Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (1): 87-96    DOI: 10.11902/1005.4537.2014.268
  本期目录 | 过刊浏览 |
管道参数对液/固两相流弯管流场及冲蚀影响分析
彭文山,曹学文()
中国石油大学 (华东) 储运与建筑工程学院 青岛 266580
Influence of Pipe Parameters on Flow Field of Liquid-solid Two-phase Flow and Erosion of Pipe Bend
Wenshan PENG,Xuewen CAO()
College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
全文: PDF(10042 KB)   HTML
摘要: 

采用计算流体动力学 (CFD) 方法分析不同管道参数包括管道直径,弯径比,弯曲角度条件下含砂液/固两相流管道的冲蚀规律,并结合颗粒碰撞模型分析了砂粒对于管壁的冲蚀作用.结果表明:不同管道参数变化影响冲蚀速率的效果是不同的,其中改变管径的影响最大,弯径比次之,弯管角度的影响最小;弯管冲蚀最严重区域有弯头侧壁及下游直管段与弯头连接处外侧,冲蚀最严重区域并不是确定的,随着弯管参数的改变,冲蚀最严重区域会发生移动.

关键词 液/固两相流弯管直径弯径比弯曲角度颗粒轨迹Stokes数    
Abstract

The influence of pipebend parameters on flow field of liquid-solid two-phase flow and the erosion of pipes was studied by means of computational fluid dynamics (CFD). The relation of the erosion of pipe with the variation of the diameter, curvature-to-diameter ratio and bending angle of the pipe, as well as the particles induced erosion of the pipe wall were mainly concerned. The results show that: (1) the erosion rate varies with the varying pipeline parameters, among them the diameter is the main factor, the curvature-to-diameter ratio the next, and the bending angle the last; (2) the areas of serious erosion mainly exist in the side walls of joints as well as the outside of the joints between export of straight pipe and elbow. However, the location of the most serious erosion is uncertain, which will change along with the variation of the bend pipe parameters.

Key wordsliquid-solid two-phase    pipe bend diameter    curvature-to-diameter ratio    bendingangle    trajectory    Stokes number
    
基金资助:国家自然科学基金项目 (51274232) 和中央高校基本科研业务费专项资金项目 (15CX06070A) 资助

引用本文:

彭文山,曹学文. 管道参数对液/固两相流弯管流场及冲蚀影响分析[J]. 中国腐蚀与防护学报, 2016, 36(1): 87-96.
Wenshan PENG, Xuewen CAO. Influence of Pipe Parameters on Flow Field of Liquid-solid Two-phase Flow and Erosion of Pipe Bend. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 87-96.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.268      或      https://www.jcscp.org/CN/Y2016/V36/I1/87

图1  弯管计算区域几何模型及网格划分
图2  最大冲蚀速率及壁面切应力与网格关系曲线
图3  弯管直径与冲蚀速率关系曲线
图4  不同直径弯管截面处流场分布图
图5  不同管径下颗粒轨迹与冲蚀速率示意图
图6  管道弯径比与冲蚀速率关系曲线
图7  不同弯径比弯管截面处流场分布图
图8  不同弯径比下颗粒轨迹与冲蚀速率示意图
图9  弯曲角度与冲蚀速率关系曲线
图10  不同弯曲角度弯管截面处流场分布图
图11  不同弯曲角度弯管颗粒轨迹与冲蚀速率关系示意图
[1] Dai Z, Shen S M, Ding G Q.Erosion-corrosion and protection of metals in fluids with solid particles[J]. Corros. Prot., 2007, 28(2): 86
[1] (代真, 沈士明, 丁国铨. 金属在固液两相流体中的冲刷腐蚀及其防护[J]. 腐蚀与防护, 2007, 28(2): 86)
[2] Zhu J, Zhang Q B, Chen Y, et al.Progress of study on erosion-corrosion[J]. J. Chin. Soc. Corros. Prot., 2014, 34(3): 199
[2] (朱娟, 张乔斌, 陈宇等. 冲刷腐蚀的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(3): 199)
[3] Wang S M, Liu H X, Zhang R, et al.Numerical simulations of sand erosion in pipelines and evaluations of solid particle erosion equations[J]. Ocean Eng., 2014, 32(1): 49
[3] (王思邈, 刘海笑, 张日等. 海底管道沙粒侵蚀的数值模拟及侵蚀公式评价[J]. 海洋工程, 2014, 32(1): 49)
[4] Lian Z H, Chen X H, Lin T J, et al.Study on erosion mechanism of bending joint in blooey line[J]. J. Southwest Petrol. Univ.(Sci. Technol. Ed.), 2014, 36(1): 150
[4] (练章华, 陈新海, 林铁军等. 排砂管线弯接头的冲蚀机理研究[J].西南石油大学学报 (自然科学版), 2014, 36(1): 150)
[5] Zhang S F, Cao H M, Liu Y, et al.Numerical simulation of liquid-solid two-phase flow and erosion-collision in a syphon[J]. J. Hebei Univ. Technol., 2008, 37(3): 48
[5] (张少峰, 曹会敏, 刘燕等. 弯管中液固两相流及壁面碰撞磨损的数值模拟[J]. 河北工业大学学报, 2008, 37(3): 48)
[6] Liu J J, Lin Y Z, Tian X L, et al.Numerical simulation of flow induced corrosion of carbon steel in liquid/solid two-phase flow system[J]. J. Chem. Ind. Eng., 2004, 55(2): 231
[6] (刘景军, 林玉珍, 田兴玲等. 碳钢在固/液两相流条件下流动腐蚀的数值模拟[J]. 化工学报, 2004, 55(2): 231)
[7] Wang K, Li X F, Wang Y, et al.Numerical prediction of the maximum erosion location in liquid-solid two-phase flow of the elbow[J]. J. Eng. Thermophys., 2014, 35(4): 691
[7] (王凯, 李秀峰, 王跃等. 液固两相流中固体颗粒对弯管冲蚀破坏的位置预测[J]. 工程热物理学报, 2014, 35(4): 691)
[8] Oka Y I, Okamura K, Yoshida T.Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation[J]. Wear, 2005, 259(1): 95
[9] Oka Y I, Yoshida T.Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage[J]. Wear, 2005, 259(1): 102
[10] DNV RP-O501. Erosive wear in piping systems[S], 2007
[11] Zhang Y, Reuterfors E P, McLaury B S, et al. Comparison of computed and measured particle velocities and erosion in water and air flows[J]. Wear, 2007, 263(1): 330
[12] Zeng L, Zhang G A, Guo X P.Erosion-corrosion at different locations of X65 carbon steel elbow[J]. Corros. Sci., 2014, 85: 318
[13] Zhang G A, Zeng L, Huang H L, et al.A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation[J]. Corros. Sci., 2013, 77: 334
[14] Stack M M, Abdelrahman S M.A CFD model of particle concentration effects on erosion-corrosion of Fe in aqueous conditions[J]. Wear, 2011, 273(1): 38
[15] Stack M M, Corlett N, Zhou S.A methodology for the construction of the erosion-corrosion map in aqueous environments[J]. Wear, 1997, 203: 474
[16] Morsi S A, Alexander A J.An investigation of particle trajectories in two-phase flow systems[J]. J. Fluid Mech., 1972, 55(2): 193
[17] Ding Y G, Wang H L, Guo X P, et al.Erosion-corrosion of metals and alloys in liquid-solid phase[J]. Mater. Prot., 2001, 34(11): 16
[17] (丁一刚, 王慧龙, 郭兴蓬等. 金属在液固两相流中的冲刷腐蚀[J]. 材料保护, 2001, 34(11): 16)
[18] Huser A, Kvernvold O.Prediction of sand erosion in process and pipe components [A]. Proc 1st North American Conference on Multiphase Technology[C]. Banff, 1998, 31: 217
[19] Parsi M, Najmi K, Najafifard F, et al.A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. J. Nat. Gas Sci. Eng., 2014, 21: 850
[20] Forder A, Thew M, Harrison D.A numerical investigation of solid particle erosion experienced within oilfield control valves[J]. Wear, 1998, 216(2): 184
[21] Grant G, Tabakoff W.Erosion prediction in turbomachinery resulting from environmental solid particles[J]. J. Aircraft, 1975, 12(5): 471
[22] Lin Z, Ruan X, Zhu Z, et al.Numerical study of solid particle erosion in a cavity with different wall heights[J]. Powder Technol., 2014, 254: 150
[23] Ji S M, Ma B L, Tan D P.Numerical analysis of soft abrasive flow in structured restraint flow passage[J]. Opt. Precis. Eng., 2011, 19(9): 2092
[23] (计时鸣, 马宝丽, 谭大鹏. 结构化表面环境下软磨粒流的流场数值分析[J]. 光学精密工程, 2011, 19(9): 2092)
[24] Du M J, Zhang Z T, Zhang C Y, et al.Analysis of erosion fracture stress of 90? elbow inmulti-phase mixed transmission pipeline[J].Oil Gas Storage Transp., 2011, 30(6): 427
[24] (杜明俊, 张振庭, 张朝阳等. 多相混输管道90°弯管冲蚀破坏应力分析[J]. 油气储运, 2011, 30(6): 427)
[25] Fu L, Gao B J.Numerical simulation of the flow field and wear prediction of the elbow of coal-oil slurry transporting pipelines[J].Chem. Eng. Mach., 2009, 36(5): 463
[25] (付林, 高炳军. 油煤浆输送管道弯管部位流场的数值模拟与磨损预测[J]. 化工机械, 2009, 36(5): 463)
[1] 彭文山,曹学文. 固体颗粒对液/固两相流弯管冲蚀作用分析[J]. 中国腐蚀与防护学报, 2015, 35(6): 556-562.