Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (5): 483-488    
  研究论文 本期目录 | 过刊浏览 |
干摩擦磨损过程中表面粗糙度的定量描述
刘洪涛, 靳晶, 曹守范, 葛世荣
中国矿业大学材料科学与工程学院 徐州 221116
The Quantitative Analysis of Surface Roughness in the Dry Friction
LIU Hongtao, JIN Jing, CAO Shoufan, GE Shirong
School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116
引用本文:

刘洪涛 靳晶 曹守范 葛世荣. 干摩擦磨损过程中表面粗糙度的定量描述[J]. 材料研究学报, 2011, 25(5): 483-488.
, , , . The Quantitative Analysis of Surface Roughness in the Dry Friction[J]. Chin J Mater Res, 2011, 25(5): 483-488.

全文: PDF(1090 KB)  
摘要: 基于金属磨损试验以及得出的摩擦系数和磨损形貌的变化规律, 用轮廓算术平均偏差Ra、均方差σ、统计分布参数、偏态系数Rsk和峰态系数Rku等可用于分析摩擦副磨损表面特性的典型表面粗糙度表征参数, 定量分析了磨损过程中表面粗糙度的变化规律。结果表明, 磨损稳定后,  Ra和σ逐渐降低, 磨损表面凸峰是钝峰, 轮廓高度分布越来越符合正态分布且数据分布越来越集中。
关键词 材料表面与界面磨损表面粗糙度表征参数分布机理    
Abstract:Based on the wear test of metal materials and the variation law of friction coefficients and the surface topographies of wear, the variation of surface roughness during the process of wear was quantitatively studied by using the typical characterizing parameters such as arithmetical mean deviation of the profile (Ra), mean square error (σ), statistical distribution parameters, coefficient of skewness (Rsk) and coefficient of kurtosis (Rku). The results indicated that after the wear was stable, Ra and σ were both decreased gradually and the profile peaks on the wear surface were blunt. In addition, the distribution of profile’s height was more and more near normal distribution and the data were more and more concentrated.
Key wordssurface and interface in the materials    wear    surface roughness    characterizing parameters    distribution    mechanism
收稿日期: 2011-07-21     
ZTFLH: 

TH117

 
基金资助:

国家自然科学基金51075387资助项目。

1 A.I.Dmitriev, M.Schargott, V.L.Popov, Direct modelling of surface topography development in a micro-contact with the movable cellular automata method, Wear, 268, 877(2010)

2 E.Y.A.Wornyoh, V.K.Jasti, C.F.Higgs, A review of dry particulate lubrication: powder and granular materials, Journal of Tribology, 129, 438(2007)

3 S.Mezlini, M.B.Tkaya, M.E.Mansori, H.Zahouani, P.Kapsa, Correlation between tribological parameters and wear mechanisms of homogeneous and heterogeneous material, Tribology Letter, 33, 153(2009)

4 WEN Shizhu, Centurial review and prospect—The development tendency of tribology, China Journal of Mechanical Engineering, 36(6), 1(2000)

(温诗铸, 世纪回顾与展望--摩擦学研究的发展趋势, 机械工程学报,  36(6), 1(2000))

5 YUAN Chenqing, LI Jian, YAN Xinping, Tribological testing technology and its development, Tribology, 22(4s), 447(2002)

(袁成清, 李 健, 严新平, 摩擦学测试技术及其发展, 摩擦学学报,  22(4s), 447(2002))

6 G.Straffelini, G.Bizzotto, V.Zanon, Improving the wear resistance of tools for stamping, Wear, 269, 693(2010)

7 Z.K.Zhang, Y.Y.Zhang, Y.S.Zhu, A new approach to analysis of surface topography, Precision Engineering, 34, 807(2010)

8 LI Fenlan, TANG Wenyan, DUAN Haifeng, HAO Jianguo, New development in research of non-contact surface roughness measurement, Laser & Infrared, 37(6), 498(2007)

(李粉兰, 唐文彦, 段海峰, 郝建国, 非接触式表面粗糙度测量研究新进展, 激光与红外,  37(6), 498(2007))

9 CHAO Caixia, YANG Shengmiao, XIU Shichao, Characteristics of the point grinding surface texture and its effects on evaluation parameters of the surface roughness, Journal of Northeastern University(Natural Science), 32(6), 846(2011)

(晁彩霞, 杨圣淼, 修世超, 点磨削纹理特征及对表面粗糙度评定参数的影响, 东北大学学报(自然科学版),  32(6), 846(2011))

10 JI Shengya, SUN Lemin, Influence of surface roughness on electric-current friction and wear properties of copper–base PM/QCr0.5 couples, Lubrication Engineering, 36(3), 69(2011)

(冀盛亚, 孙乐民, 表面粗糙度对铜基粉末冶金/铬青铜摩擦副载流摩擦磨损性能影响的研究, 润滑与密封,  36(3), 69(2011))

11 GE Shirong, ZHU Hua, Fractal in Tribology (Beijing, China Machine Press, 2005) p.85, p.227

(葛世荣, 朱 华,  摩擦学的分形, (北京, 机械工业出版社, 2005) p.85, p.227)

12 WEN Jianping, ZHEN Minghui, CHENG Wenkong, YU Na, Structural design and tribological properties for aluminium-plastics self-lubricating composites, China Mechanical Engineering, 17(21), 2292(2006)

(温建萍, 甄明辉, 程文孔, 俞  娜, 铝--塑自润滑材料的结构分析设计与摩擦磨损性能, 中国机械工程,  17(21), 2292(2006))

13 P.S.Agarwal, V.Rao, A probabilistic approach to predict surface roughness in ceramic grinding, International Journal of Machine Tools & Manufacture, 45, 609(2005)

14 CHEN Yu, CAO Ping, PU Chengzhi, LIU Yeke, LI Na, Experimental study of effect of water-rock interaction on micto-topography of rock surface, Rock and Soil Mechanics, 31(11), 3452(2011)

(陈 瑜, 曹 平, 蒲成志, 刘业科, 李 娜, 水--岩作用对岩石表面微观形貌影响的试验研究, 岩土力学,  31(11), 3452(2010))

15 B.Bhushan, Introduction to Tribology (New York, John Wiley & Sons, 2002) p.29
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[4] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] 王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
[6] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[7] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[8] 邓海龙, 刘兵, 郭扬, 康贺铭, 李明凯, 李永平. 基于内部失效机理预测评估渗碳Cr-Ni齿轮钢的超高周疲劳强度[J]. 材料研究学报, 2023, 37(1): 55-64.
[9] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[10] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[11] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[12] 邹田春, 巨乐章, 李龙辉, 符记. 铺层方式对CFRP-Al单搭接接头胶接性能的影响[J]. 材料研究学报, 2022, 36(9): 715-720.
[13] 杨文静, 李光宇, 王建, 丁桦, 张宁, 张艳苓, 侯红亮, 李志强. 7B04铝合金超塑变形过程中空洞的演变和能量耗散[J]. 材料研究学报, 2022, 36(9): 667-678.
[14] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[15] 杨晓辉, 李克智, 白龙腾, 郭亚威. 不同热解碳界面层厚度C/ZrC-SiC复合材料烧蚀性能及其机理[J]. 材料研究学报, 2022, 36(7): 489-499.