Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (3): 251-256    
  综述 本期目录 | 过刊浏览 |
690TT合金在特殊环境下的腐蚀问题
余远方,王辉,胡石林
中国原子能科学研究院 北京 102413
SOME CORROSION PROBLEMS OF ALLOY 690TT IN SPECIAL ENVIRONMENTS
YU Yuanfang, WANG Hui, HU Shilin
China Institute of Atomic Energy, Beijing 102413
全文: PDF(847 KB)  
摘要: 

在广泛的电厂运行及实验室研究基础上,690TT合金被证明是目前最佳的蒸汽发生器(SGs)管材之一,690TT合金的使用有效地提高了PWR蒸汽发生器的可靠性,因而成为在役第二代核电站中最常用的传热管管材,并将大量应用于第三代商用核电厂。然而在水质恶化以及随服役时间的增加,690TT合金不可避免的也会遭遇腐蚀。本文对690TT合金使用安全性造成潜在威胁的脱合金成分腐蚀(Cr贫化)、铅致应力腐蚀破裂(PbSCC)、低价硫应力腐蚀开裂(Sy-SCC)的情况加以较详细的介绍。

关键词 蒸汽发生器690TT合金脱合金成分腐蚀铅致应力腐蚀破裂低价硫应力腐蚀开裂    
Abstract

In order to improve the reliability of PWR steam generators, alloy 690TT has been developed and verified as the optimum steam generators (SGs) tubing material at present, based on wide operating and laboratorial experience. Alloy 690TT is and will be one of most popular tube material of present and future commercial nuclear plants. Alloy 690TT is usually insusceptible both under acidic and alkaline conditions, but the corrosion is unavoidable under special corrosive environment in time. Dealloying (Cr depletion), lead stress corrosion cracking (PbSCC), low-valence sulfur stress corrosion cracking (Sy-CC) are considered being potential damage to Alloy 690TT and will be described in detail in this article.

Key wordssteam generator    alloy 690TT    lead stress corrosion cracking (PbSCC)    dealloying    low-valence sulfur stress corrosion cracking (Sy-CC)
收稿日期: 2009-02-16     
ZTFLH: 

TG172.9

 
通讯作者: 余远方     E-mail: yuyuanf@126.com
Corresponding author: YU Yuanfang     E-mail: yuyuanf@126.com
作者简介: 余远方,女,1981年生,硕士,助理工程师,研究方向为反应堆材料腐蚀与防护研究

引用本文:

余远方,王辉,胡石林. 690TT合金在特殊环境下的腐蚀问题[J]. 中国腐蚀与防护学报, 2010, 30(3): 251-256.
YU Yuan-Pang. SOME CORROSION PROBLEMS OF ALLOY 690TT IN SPECIAL ENVIRONMENTS. J Chin Soc Corr Pro, 2010, 30(3): 251-256.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I3/251

[1] Gong Z C,Sun Y L,Kong F G, et al. Microstructure and corrosion properties of 690TT alloy used for steam generator [J]. Power Eng. , 2003, 23(4): 2592-2596
  (龚正春,孙永立,孔繁革等. 蒸汽发生器用690TT合金的组织结构和腐蚀性能 [J]. 动力工程, 2003,23(4):2592-2596)
[2] Ding X S. The design safety of steam generators in NPP [J]. Nucl. Saf., 2005, 2: 1-6
[3] (丁训慎. 核电厂蒸汽发生器设计中的安全问题 [J], 核安全, 2005, 2:1-6)
[4] Ding X S. The manufacturing safety of steam generators in NPP [J]. Nucl. Saf., 2006, 1: 16-17
[5] (丁训慎. 核电厂蒸汽发生器制造中的安全问题 [J], 核安全, 2006, 1:16-17)
[6] Takaya K, Toshio Y, Setsuo T. Research on corrosion resistance of steam generator tube [J]. Mitsubishi Heavy Ind., Ltd. Tech. Rev., 1996, 33(11): 6-10
[7] Ding X S. Pitting its protection of steam generator tubes in nuclear power plants [J]. Corros. Prot., 2007, 28(7): 364-366
[8] 丁训慎. 核电站蒸汽发生器传热管的点腐蚀及其防护 [J]. 腐蚀与防护, 2007, 28(7):364-366
[9] Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion. 2003,59(11): 931-933
[10] Sumilani N, Kusakabe T, Onimura K, et al. IGA/SCC Behavior of Thermally Treated Alloy 690 [A]. Proc. 1989 EPRI Alloy 690 Workshop [C]. Palo Allo, CA: EPRI, 1990: 3-23
[11] Staehle R W. Latent/Potential Degradation (Phenomena, Mode) [A]. Proactive Aging Management Group Meeting [C], 2008
[12] Sarver J M. Information on lead concentration for BWI water chemistry manual [R]. Int. Rep. B & W 25211-002, 1994.
[13] Agrawal A. K,Paine J P N. Lead Cracking of Alloy 600-A review [A]. Proc 4 Int Symp on Environmental Degra-dation of Materials in Nuclear Power Systems--Water Reactors [C]. Jekyll Insland GA, 1989.
[14] Miglin B P,Sarver J M. Investigation of Lead as a Cause of Stress Corrosion at Support Plate Interatctions [R]. EPRI NP-7367-5, 1991.
[15] Sakai T, Senjuh T, Aoki K, et al. Lead-Induced Stress Corrosion Cracking of Alloy 600 and 690 in High Temperature Water [A]. Proc 5 Int Symp on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Monterey,CA: 1991: 764.
[16] Chung K K, Lim J K, Moriya S, et al. Lead Induced Stress Corrosion Cracking of Alloy 690 in High-Tempe rature Water [A]. Proc. 7th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Houston, TX: NACE, 1995: 233-234
[17] Staehle R W. Future Performance of Alloy 690TT [C]. Presented at NPIC [A], Chengdu, 2008: 4-5
[18] Castano-Marin M L, Gomez-Briceno D, Hernandez-Arroyo F.Influence of Lead Contamination on the Stress Corrosion Resistance of Nickel Alloys [A], Proc. 6th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Warrendale, PA: TMS, 1993: 189.
[19] Agrawal A K, Paine P N. Lead Cracking of Alloy 600-A Review [A].Proc. 4th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Houston, TX: MACE,1990: 7-8
[20] Seidell A. Solubilities of Inorganic and Organic Compounds, 2nd ed [M]. New York, NY: Van Nostrand Co., 1919.
[21] Stephen H, Stephen T. Solubilities of Inorganic and Organic Compounds, (vol. 1) [M]. New York, NY: Pergamon Press, 1979).
[22] Sarver J M. IGSCC of Nickel Alloys in Lead-Conta- minated High-purity Water [C]. EPRI Workshop on Intergranular Corrosion and Primary Water Stress Corrosion Cracking Mechanisms, NP-5971 [A].Palo Alto, CA: EPRI, 1987: 11-13
[23] Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 3 [J].Corrosion, 2004, 60(2): 144-150
[24] Helie M. Lead Assisted Stress Corrosion Cracking of Alloys 600, 690 and 800 [A]. Proc. 6th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. San Diego. CA: Minerals Metals Materials Society, 1993: 179
[25] Sakai T, Senjuh T, Aoki K. Study of corrosion resistance of alloy 600 and 690 in high temperature water containing lead [A]. Corrosion 92 [C]. NACE, Houston TX, 1992: 1-83
[26] Flint G N, Wcldon B A. Some Investigations into the Stress Corrosion Behaviour of Fe-Ni-Cr Alloys in High-Temperature Water [A]. Conf. Cycle on Chemistry of Water and Aqueous Corrosion in Steam Generators (Conventional and Nuclear) [C]. Ecuelles, France, 1972: 17
[27] Pement F W, Wilson L W, Aspden R G. Stress corrosion cracking studies of high nickel austenitic alloys in several high temperature aqueous solutions [J]. Mater. Perform. 1980, 19(4): 43.
[28] Staehle R W, Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: part 3 [J]. Corrosion. 2004, 60(2): 166
[29] Briceno D G, Castano L. Inconel 690TT and Incoloy 800 in S, Cu, and Pb Environments [A]. EPRI Workshop on Steam Genorator Secondary-Side IGA/SCC [C]. Palo Alto, CA: EPRI. 1991
[1] 孟凡江, 王俭秋, 韩恩厚, 柯伟. 划伤690TT合金在高温含氧水中应力腐蚀裂纹萌生的研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 413-418.
[2] 张志明,王俭秋,韩恩厚,柯伟. 表面状态对690TT合金腐蚀及应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(6): 441-445.
[3] 胡轶嵩,王俭秋,柯伟,韩恩厚. 690TT合金在高温含铅碱液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(6): 427-432.
[4] 程芳婷 . 蒸汽发生器的腐蚀失效分析[J]. 中国腐蚀与防护学报, 2006, 26(6): 376-379 .