Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 495-503    DOI: 10.11902/1005.4537.2016.179
  综合评述 本期目录 | 过刊浏览 |
船用螺旋桨防护技术及其材料研究进展
李科1,2, 翟晓凡1, 管方1,2, 钱洲亥3, 张美霞1,2, 段继周1(), 侯保荣1
1 中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071
2 中国科学院大学 北京 100049
3 国网浙江省电力公司电力科学研究院 杭州 310006
Progress on Materials and Protection Technologies for Marine Propeller
Ke LI1,2, Xiaofan ZHAI1, Fang GUAN1,2, Zhouhai QIAN3, Meixia ZHANG1,2, Jizhou DUAN1(), Baorong HOU1
1 Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 State Grid Zhejiang Electric Power Company Electric Power Research Institute, Hangzhou 310006, China
全文: PDF(1285 KB)   HTML
摘要: 

介绍了船用螺旋桨在海洋环境中的腐蚀与污损问题及其防护方法发展现状,着重介绍了螺旋桨外加防护技术与螺旋桨新型耐蚀材料。螺旋桨的外加防护技术主要有阴极保护、涂装防护涂层、电解防污等方法,适用于在役螺旋桨设备。新型螺旋桨材料不断发展,除了常规铜合金系列材料,还发展了耐蚀性能良好的不锈钢材料以及复合材料等。本文对螺旋桨几种重要的防护方法及新型螺旋桨材料进行了综述介绍,并指出了螺旋桨防护技术及其耐蚀材料研究和应用的发展趋势。

关键词 船用螺旋桨防护技术耐蚀材料不锈钢复合材料    
Abstract

This paper focuses on the nowadays research status of corrosion and biofouling phenomena occurred on marine propeller as well as the relevant protection methods, namely external protection technologies for the propellers in service and new corrosion-resistant materials for the propeller fabrication. The protection technologies of marine propeller include mainly cathodic protection technologies, anticorrosion coatings, and electrolytic antifouling technologies, which are suitable for the in-service propellers. Except for common copper alloys, new materials applied to making propeller developed rapidly, such as stainless steels and composite materials which have attached much attention. Several protection methods and new materials for marine propellers are introduced in the paper. Finally, the trend of research and development of materials and protection technologies for marine propeller in the future was also pointed out.

Key wordsmarine propeller    protective technology    corrosion-resistant material    stainless steel    composite material
收稿日期: 2016-09-20     
ZTFLH:  U664.33  
基金资助:国家重点基础研究发展计划 (2014CB643304),海洋公益性行业科研专项经费 (201405013-4) 和国家电网公司科技项目 (5211DS150016)
作者简介:

作者简介 李科,男,1992年生,硕士生

引用本文:

李科, 翟晓凡, 管方, 钱洲亥, 张美霞, 段继周, 侯保荣. 船用螺旋桨防护技术及其材料研究进展[J]. 中国腐蚀与防护学报, 2017, 37(6): 495-503.
Ke LI, Xiaofan ZHAI, Fang GUAN, Zhouhai QIAN, Meixia ZHANG, Jizhou DUAN, Baorong HOU. Progress on Materials and Protection Technologies for Marine Propeller. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 495-503.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.179      或      https://www.jcscp.org/CN/Y2017/V37/I6/495

图1  金属材料表面发生空蚀的过程[21]
图2  空泡腐蚀的机制[21]
Coating Type Color Dry film thickness μm Wet film thickness μm Construction method
1 Pure epoxy paint with aluminium powders Aluminum 80 134 Fog spray
2 Pure epoxy paint with aluminium powders Aurichalceous 70 117 Series spray
3 Elastic-contamination-free transition paint Pink 100 176 Series spray
4 Fluoropolymer- contamination-free antifouling paint Red 150 203 Series spray
表1  某种螺旋桨配套涂层
Grade Heat treatment σb / MPa δ / % HB A Marine corrosion fatigue resistance
Arcolck1000 Quench +Tempering >950 330~380 >M Stainless steel
MFC Solid solution 531 55 140 17~19
MSS Solid solution +Prescription 882~980 10~20 260~350 49~98 40
MCRS 950 ℃/3 h AC+600 ℃/3 h AC 882~980 10~30 200~300 49~98 30
SAF2507 Quench 550 25 290
表2  不锈钢螺旋桨材料的力学性能和耐海水腐蚀疲劳性能[57-61]
[1] Bertram V.Practical Ship Hydrodynamics[M]. 2nd Ed. Amsterdam: Elsevier, 2012
[2] Hou B R, Li X G, Ma X M, et al.The cost of corrosion in China[J]. NPJ Mater. Degradat., 2017, 1: 4
[3] Little B, Wagner P, Mansfeld F.An overview of microbiologically influenced corrosion[J]. Electrochim. Acta, 1992, 37: 2185
[4] Lackenby H.Resistance of ships, with special reference to skin friction and hull surface condition[J]. Proc. Inst. Mech. Eng., 1962, 176(1962): 981
[5] Mosaad M A A R. Marine propeller roughness penalties [D]. Newcastle: Newcastle University, 1986
[6] Milne A.Roughness and drag from the marine paint chemist’s viewpoint [A]. International Workshop on Marine Roughness and Drag[C]. London, 1990
[7] Li H T, Xu L K, Lin C G, et al.Corrosion resistance of Ni-P alloys coating on copper-manganese-aluminium alloy in seawater[J]. Equip. Environ. Eng., 2008, 5(6): 112(李海涛, 许立坤, 蔺存国等. 高锰铝青铜基体上化学镀Ni-P合金镀层在海水中耐蚀性的研究[J]. 装备环境工程, 2008, 5(6): 112)
[8] Pantazopoulos G, Papaefthymiou S.Failure and fracture analysis of austenitic stainless steel marine propeller shaft[J]. J. Fail. Anal. Prev., 2015, 15: 762
[9] Bertoglio C, Rizzo C M.Survey on fatigue strength of cast bronzes intended for marine propellers[J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 793
[10] Marsh G.A new start for marine propellers?[J]. Reinf. Plast., 2004, 78: 34
[11] Chiachio M, Chiachio J, Rus G.Reliability in composites-a selective review and survey of current development[J]. Composites, 2012, 43B: 902
[12] Mouritz A P, Bannister M K, Falzon P J, et al.Review of applications for advanced three-dimensional fibre textile composites[J]. Composites, 1999, 30A: 1445
[13] Hong Y, Hao L F, Wang P C, et al.Structural design and multi-objective evaluation of composite bladed propeller[J]. Polym. Polym. Compos., 2014, 22: 275
[14] Meng R S, Liu H J, Fang Z G.Aluminous air propeller composite anti-corrosion technology[J]. Ship Sci. Technol., 2006, 28(5): 90(孟润生, 刘宏君, 方志刚. 铝质空气螺旋桨综合防腐蚀技术[J]. 舰船科学技术, 2006, 28(5): 90)
[15] Pham-Thanh N, Van Tho H, Yum Y J.Evaluation of cavitation erosion of a propeller blade surface made of composite materials[J]. J. Mech. Sci. Technol., 2015, 29: 1629
[16] Franc J P, Michel J M.Fundamentals of Cavitation[M]. Netherlands: Springer, 2006
[17] Carlton J S.Marine Propellers and Propulsion[M]. Amsterdam: Butterworth-Heinemann, 2011
[18] Hong S, Wu Y P, Zheng J F, et al.Cavitation erosion behavior and mechanism of HVOF sprayed WC-10Co-4Cr Coating in 3.5 wt% NaCl solution[J]. Trans. Indian Inst. Met., 2015, 68: 151
[19] Maksimovi? V M, Deve?erski A B, Do?en A, et al.Comparative study on cavitation erosion resistance of A356 alloy and A356FA5 composite[J]. Trans. Indian Inst. Met., 2017, 70: 97
[20] Cervone A, Bramanti C, Rapposelli E, et al.Thermal cavitation experiments on a NACA 0015 hydrofoil[J]. J. Fluids Eng., 2006, 128: 326
[21] Li X G.Corrosion and Protection of Materials [M]. Changsha: Central South University Press, 2009: 94(李晓刚. 材料腐蚀与防护 [M]. 长沙: 中南大学出版社, 2009: 94)
[22] Konno A, Wakabayashi K, Yamaguchi H, et al.On the mechanism of the bursting phenomena of propeller tip vortex cavitation[J]. J. Mar. Sci. Technol., 2002, 6: 181
[23] Ryuichi M S.Translated by Fang Z C. Cavitation erosion of marine propeller[J]. Trans. Mater. Sci., 1979, 16(2): 41(佐藤隆一著. 方正春译. 船用螺旋桨的空泡腐蚀[J]. 材料科学, 1979, 16(2): 41)
[24] Carlton J S.Marine Propellers and Propulsion[M]. 2nd Ed. Amsterdam: Elsevier, 2007: 521
[25] Chang Y C, Hu C N, Tu J C, et al.Experimental investigation and numerical prediction of cavitation incurred on propeller surfaces[J]. J. Hydrodyn., 2010, 22B: 764
[26] Ju D Y, Han B.Investigation of water cavitation peening-induced microstructures in the near-surface layer of pure titanium[J]. J. Mater. Process. Technol., 2009, 209: 4789
[27] Karimi A, Martin J L.Cavitation erosion of materials[J]. Int. Met. Rev., 2013, 31: 1
[28] The Chinese Shipbuilding Engineering Society Academic Committee of ship mechanics. The present situation and the latest development trend of ship mechanics [A]. Conference on ship hydrodynamics and the entry of the Chinese shipping academia to ITTC30 anniversary[C]. Hangzhou, 2008: 25(中国造船工程学会船舶力学学术委员会. 船舶力学的现状与最新发展趋势 [A]. 2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集[C]. 杭州, 2008: 25)
[29] Yang Z C, Bai X Q, Jiang H, et al.Analysis of biofouling occurrence trends on ship hull surface[J]. Ship Eng., 2016, 38(2): 29(杨宗澄, 白秀琴, 姜欢等. 船体表面海洋污损生物附着规律分析[J]. 船舶工程, 2016, 38(2): 29)
[30] Lackenby H.Resistance of ships, with special reference to skin friction and hull surface condition[J]. Proc. Inst. Mech. Eng., 1962, 176: 981
[31] Shi C, Zhang L.Technical analysis of ship propeller electrolysis anti-fouling device[J]. China Water Transp., 2014, 14(2): 126(石崇, 张陆. 船舶螺旋桨电解防污装置方案技术浅析[J]. 中国水运, 2014, 14(2): 126)
[32] Zheng X T, Wang D, Chen J F.Experimental study of ultrasonic marine anti-biofouling technique[J]. Technol. Acoust., 2015, 34: 525(郑晓涛, 王丹, 陈景峰. 超声波防海生物技术试验研究 [J]. 声学技术, 2015, 34: 525)
[33] Jin J H.Ship corrosion and corrosion protection of zinc[J]. Navigation, 1984, (3): 27(金俊洪. 舰船腐蚀与锌极防蚀[J]. 航海, 1984, (3): 27)
[34] Ma J L, Wen J B.Corrosion analysis of Al-Zn-In-Mg-Ti-Mn sacrificial anode alloy[J]. J. Alloy. Compd., 2010, 496: 110
[35] Liang H, Du M, Zhang Y H.Polarization performance of two aluminium alloy sacrificial anodes[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 153(梁虎, 杜敏, 张有慧. 铝合金牺牲阳极极化性能研究[J]. 中国腐蚀与防护学报, 2014, 34: 153)
[36] Xu L K, Ma L, Xing S H, et al.Review on cathodic protection for marine structures[J]. Mater. China, 2014, 33: 106(许立坤, 马力, 邢少华等. 海洋工程阴极保护技术发展评述[J]. 中国材料进展, 2014, 33: 106)
[37] Li C J, Du M.Research and development of cathodic protection for steels in deep seawater[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10(李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33: 10)
[38] Huang Y C, Jin X D.Study of stress corrosion and cathodic protection on Mn-Cu alloy propeller[J]. Corros. Prot., 1990, 11: 90(黄永昌, 金晓东. 锰铜合金螺旋浆应力腐蚀与阴极保护研究[J]. 腐蚀与防护, 1990, 11: 90)
[39] Christodoulou C, Glass G, Webb J, et al.Assessing the long term benefits of Impressed Current Cathodic Protection[J]. Corros. Sci., 2010, 52: 2671
[40] von Baeckmann W, Bohnes H, Franke G, et al. Handbook of Cathodic Corrosion Protection [M]. 3rd Ed. Houston: Gulf Professional Publishing, 1997
[41] Flemming H C, Griebe T, Schaule G.Antifouling strategies in technical systems—A short review[J]. Water Sci. Technol., 1996, 34: 517
[42] Burgess J G, Boyd K G, Armstrong E, et al.The development of a marine natural product-based antifouling paint[J]. Biofouling, 2003, 19(Suppl.): 197
[43] Kiil S, Dam-Johansen K, Weinell C E, et al.Seawater-soluble pigments and their potential use in self-polishing antifouling paints: simulation-based screening tool[J]. Prog. Org. Coat., 2002, 45: 423
[44] Todd J S, Zimmerman R C, Crews P, et al.The antifouling activity of natural and synthetic phenol acid sulphate esters[J]. Phytochemistry, 1993, 34: 401
[45] Zhao H T, Lu W Z, Li J, et al.Degradation behavior of solvent-free epoxy coatings in simulated flowing sea water with sand by different flow rates[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 329(赵洪涛, 陆卫中, 李京等. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37: 329)
[46] Pan Y, Zhang S P, Zhou J L, et al.Controlling factors and progress of low surface energy silicone antifouling coatings[J]. Paint Coat. Ind., 2009, 39(12): 58(潘莹, 张三平, 周建龙等. 有机硅低表面能防污涂料控制因素与研究进展[J]. 涂料工业, 2009, 39(12): 58)
[47] Shen L, Gao J, Song D D, et al.Multifunctional water-based surface tolerant coating and its protective performance[J]. Chin. J. Eng., 2015, 37: 1594(申琳, 高瑾, 宋东东等. 多功能水性低表面处理涂料及涂层防护性能[J]. 工程科学学报, 2015, 37: 1594)
[48] Jin C Z, Zhang S, Chen S P.Discussion of anti-corrosion and anti-fouling painting process for propeller[J]. Mar. Technol., 2013, (4): 39(金承泽, 张松, 陈松培. 船舶螺旋桨防腐防污涂装工艺的探讨[J]. 造船技术, 2013, (4): 39)
[49] Matsushita K, Ogawa K.Ship hull and propeller coatings using non-polluting and anti-fouling paint [R]. London, UK: Marine Management Holdings, 1993
[50] Kong D M, Guo Z J.Water electrolysis of sodium hypochlorite generator[J]. Petro-Chem. Equip., 1989, 18(2): 34(孔德明, 郭志军. 海水电解次氯酸钠发生装置[J]. 石油化工设备, 1989, 18(2): 34)
[51] Fang Z C.Development of the stainless steel of marine propeller[J]. Dev. Appl. Mater., 2002, 17(6): 43(方正春. 船舶螺旋桨用不锈钢的发展[J]. 材料开发与应用, 2002, 17(6): 43)
[52] Song Q N, Bao Y F, Jiang Y F, et al.Technical Note: Corrosion and cavitation erosion behaviors of the Thermo-mechanically Affected Zone (TMAZ) in a friction stir processed Ni-Al bronze[J]. Corrosion, 2016, 72: 1438
[53] Yang R J.Copper alloy propeller material for foreign ships[J]. Int. Ship Technol., 1981, (9): 1(杨汝钧. 国外舰船用铜合金螺旋桨材料[J]. 国外舰船技术(材料类), 1981, (9): 1)
[54] Baker S, Carr E, Laithwaite E H, et al.Copper zincaluminiumferrous metalsconcrete: Corrosion of metals in buildings london symposium, MARCH, 1957[J]. Anti-Corros. Method. Mater., 1957, 4(5): 170
[55] Castro M L, Romero R.Transformations during continuous cooling of a β-Cu-22.72Al-3.55Be (at.%) alloy[J]. Scr. Mater., 1999, 42(2): 157
[56] Ritchie I G, Sprungmann K W, Sahoo M.Internal friction in so noston-a high damping mn/cu-based alloy for marine propeller applications[J]. Le J. De Phys. Colloques, 1985, 46(C-10): 409
[57] Qian Y S.The corrosion behavior of martensitic stainless steel in different states [D]. Tiayuan: Taiyuan University of Technology, 2012(钱玉水. 马氏体不锈钢在不同态下的腐蚀性能研究 [D]. 太原: 太原理工大学, 2012)
[58] Ueda S.Development of high strength steel for propeller (Mitsubishi corrosion resistant steel)[J]. Dev. Appl. Mater., 1979, (10): 17(植田昭二. 用于螺旋桨的高强度钢 (三菱耐蚀钢) 的发展[J]. 材料开发与应用, 1979, (10): 17
[59] Kawazoe T, Abe T, Nishikido S, et al.Development of mitsubishi marine propeller[J]. Mar. Eng., 1988, 23(4): 257
[60] Wang G, Guo Y D, Guo L, et al.Development of duplex stainless steel, characteristics and applications[J]. Sci. Technol. Innovat., 2015, (7): 91(王刚, 郭幼丹, 郭雷等. 双相不锈钢的发展、特点及其应用[J]. 科技与创新, 2015, (7): 91)
[61] Luo Y Z.Development status and prospect of stainless steel propeller[J]. Nonrust, 2006,(1): 8, 2006, (1): 8)
[62] Bechly M E, Clausen P D.Structural design of a composite wind turbine blade using finite element analysis[J]. Comput. Struct., 1997, 63: 639
[63] Khan A M, Adams D O, Dayal V, et al.Effects of bend-twist coupling on composite propeller performance[J]. Mech. Compos. Mater. Struct., 2000, 7: 383
[64] Kee Y J, Kim J H.Vibration characteristics of initially twisted rotating shell type composite blades[J]. Compos. Struct., 2004, 64: 151
[65] Young Y L.Fluid-structure interaction analysis of flexible composite marine propellers[J]. J. Fluids Struct., 2008, 24: 799
[66] Mouritz A P, Gellert E, Burchill P, et al.Review of advanced composite structures for naval ships and submarines[J]. Compos. Struct., 2001, 53: 21
[67] Huang X Y, Liu B.Current situation and development of warship structure material[J]. Ship Boat, 2004, (3): 21(黄晓艳, 刘波. 舰船用结构材料的现状与发展[J]. 船舶结构, 2004, (3): 21)
[68] Lin C C, Lee Y J, Hung C S.Optimization and experiment of composite marine propellers[J]. Compos. Struct., 2009, 89: 206
[69] MIIT. World's largest composite propeller[J]. Dual Use Technol. Prod., 2003, (7): 20(工信. 世界上最大复合材料螺旋桨[J]. 军民两用技术与产品, 2003, (7): 20)
[70] Young Y L.Time-dependent hydroelastic analysis of cavitating propulsors[J]. J. Fluids Struct., 2007, 23: 269
[71] Friesch J, Kim, K H, Andersen P, et al. The specialist committee on cavitation induced pressures, final report and recommendations to the 23rd ITTC [A]. The 23rd International Towing Tank Conference[C]. Venice, 2002: 417
[72] Ji B, Luo X W, Wang X, et al.Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller[J]. J. Fluids Eng., 2011, 133: 011102
[73] Zhang S, Zhu X, Sun H T, et al.Review of researches on composite marine propellers[J]. Adv. Mech., 2012, 42: 620(张帅, 朱锡, 孙海涛等. 船用复合材料螺旋桨研究进展[J]. 力学进展, 2012, 42: 620)
[74] Guan X.Cavitation erosion behavior of titanium and Ti-6Al-4V alloy [D]. Tianjin: Tianjin University, 2010(关昕. 钛及Ti-6Al-4V合金的空蚀行为研究 [D]. 天津: 天津大学, 2010)
[75] Yang X D.Development situation of cast titanium alloy propeller[J]. Dev. Appl. Mater., 1994, 9(5): 40(杨学东. 铸造钛合金螺旋桨材料发展概况[J]. 材料开发与应用, 1994, 9(5): 40)
[76] Yang Y L, Luo Y Y, Zhao H Z, et al.Research and application status of titanium alloys for warships in China[J]. Rare Met. Mater. Eng., 2011, 40(Suppl.2): 538(杨英丽, 罗媛媛, 赵恒章等. 我国舰船用钛合金研究应用现状[J]. 稀有金属材料与工程, 2011, 40(增刊2): 538)
[77] Pan X.A new casting alloys for marine propeller was developed in US[J]. Funct. Mater. Inform., 2007, 4(2): 60(潘雄. 美开发出船螺旋桨用新型铸造合金[J]. 功能材料信息, 2007, 4(2): 60)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[8] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[13] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[14] 付安庆,赵密锋,李成政,白艳,朱文军,马磊,熊茂县,谢俊峰,雷晓维,吕乃欣. 激光表面熔凝对超级13Cr不锈钢组织与性能的影响研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[15] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.