Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 311-316    DOI: 10.11902/1005.4537.2014.106
  本期目录 | 过刊浏览 |
碱性溶液中L-半胱氨酸对AA5052铝合金阳极缓蚀作用研究
王大鹏,高立新,张大全()
Corrosion Inhibition of L-Cysteine for AA5052 Al-alloy Anode in Alkaline Solution
Dapeng WANG,Lixin GAO,Daquan ZHANG()
School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
全文: PDF(943 KB)   HTML
摘要: 

采用析氢法、失重法、极化曲线和电化学阻抗法测试了L-半胱氨酸对4 mol/L NaOH溶液中AA5052铝合金的缓蚀性能。结果表明:L-半胱氨酸的最佳缓蚀浓度为30 mmol/L;L-半胱氨酸在AA5052铝合金表面的吸附作用符合修正Langmuir曲线;L-半胱氨酸缓蚀剂对AA5052铝合金的缓蚀机理为几何覆盖效应,抑制腐蚀反应的阴极过程,属于阴极型缓蚀剂。

关键词 缓蚀剂AA5052铝合金L-半胱氨酸NaOH溶液    
Abstract

The corrosion behavior of AA5052 Al-alloy in 4 mol/L NaOH solution was investigated by means of mass loss method, measurements of hydrogen gas evolution,polarization curve and electrochemical impedance spectroscopy. It was found that the inhibitor of 30 mmol/L L-Cysteine exhibited the optimal corrosion inhibition performance. Moreover, the adsorption of the L-Cysteine on the Al-alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarization curves indicated that the L-Cysteine inhibited the cathodic reaction and acted as a cathodic inhibitor. The inhibition mechanism was dominated by the geometric covering effect.

Key wordscorrosion inhibitor    AA5052 Al-alloy    L-Cysteine    NaOH solution
    
基金资助:国家自然科学基金项目 (20776083和20911140272) 资助

引用本文:

王大鹏,高立新,张大全. 碱性溶液中L-半胱氨酸对AA5052铝合金阳极缓蚀作用研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 311-316.
Dapeng WANG, Lixin GAO, Daquan ZHANG. Corrosion Inhibition of L-Cysteine for AA5052 Al-alloy Anode in Alkaline Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 311-316.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.106      或      https://www.jcscp.org/CN/Y2015/V35/I4/311

图1  AA5052铝合金在不同溶液中析氢量随时间的变化关系
图2  AA5052铝合金在不同溶液中失重量随时间的变化关系
图3  AA5052铝合金在不同温度溶液中的C/θ-C曲线
表1  拟合C/θvsC的线性关系所得参数
Temperature ΔH θ kJmol-1 ΔG θ kJmol-1 ΔS θ J / molK-1
20 -37.2 -19.8 -58.40
30 -42.3 -24.4 -59.76
40 -47.5 -28.9 -59.42
50 -50.2 -31.1 -59.13
表2  L-半胱氨酸缓蚀剂的吸附热力学参数
Solution C mmolL-1 -Ecorr V -βc mVdec-1 Icorr mAcm-2
4 mol/L NaOH 0 1.5607 444.75 70.02
10 1.627 356.96 47.62
20 1.6261 383.64 42.87
30 1.6342 381.7 39.98
40 1.6375 347.51 35.74
表3  AA5052铝合金在含有不同浓度L-半胱氨酸的4 mol/L NaOH溶液中极化曲线拟合值
图4  ln K-T-1曲线
图5  AA5052铝合金在含有不同浓度L-半胱氨酸的4 mol/L NaOH溶液中的极化曲线
图6  AA5052铝合金在含不同浓度L-半胱氨酸的4 mol/L NaOH溶液中的电化学阻抗谱
图7  等效电路图
C mmolL-1 Rs Ωcm2 CPE1 Y0 (Ssncm-2) n (Rct)1 Ωcm2 L1 Hcm2 R1 Ωcm2 CPE2 Y0 (Ssncm-2) n (Rct)2 Ωcm2 L2 Hcm2 R2 Ωcm2
0 0.46 0.18 0.91 0.31 0.006 0.50 4.0×10-4 0.95 0.21 --- ---
10 0.51 0.09 0.94 0.45 0.049 0.55 2.5×10-4 0.87 0.39 3.1×10-3 1.433
20 0.48 0.07 0.88 0.64 0.042 0.58 2.5×10-4 0.91 0.42 2.8×10-3 1.971
30 0.49 0.09 0.91 0.78 0.041 0.64 2.4×10-4 0.84 0.41 2.9×10-3 1.843
40 0.52 0.07 0.82 0.84 0.081 0.72 2.3×10-4 0.92 0.43 3.9×10-3 2.152
表4  AA5052 铝合金在含不同浓度L-半胱氨酸的4 mol/L NaOH溶液中的电化学阻抗拟合值
[1] Bin H, Liang G. Neutral electrolyte aluminum air battery with open configuration[J]. Rare Met., 2006, 25(6): 360
[2] Rybalka K V, Beketaeva L A. Anodic dissolution of aluminum in nonaqueous electrolytes[J]. J. Power Sources, 1993, 42(3): 377
[3] Gelman D, Lasman I, Elfimchev S, et al. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications[J]. J. Power Sources, 2015, 285: 100
[4] Xu C B, Wang W. Research progress of aluminum alloy anode materials used in Aluminum-Air Battery[J]. Mater. Prot., 2014, 47(3): 37 (徐春波, 王为. 铝-空气电池用铝合金阳极材料的研究进展[J]. 材料保护, 2014, 47(3): 37)
[5] Ma J, Wen J, Gao J, et al. Performance of Al-0.5Mg-0.02Ga-0.1Sn-0.5Mn as anode for Al-air battery in NaCl solutions[J]. J. Power Sources, 2014, 253: 419
[6] He J G, Wen J B, Li X D, et al. Influence of Ga and Bi on electrochemical performance of Al-Zn-Sn sacrificial anodes[J]. Trans. Nonferrous Met. Soc. China, 2011, 21(8): 1580
[7] Li B, Yan L G, Chen Y, et al. Electrochemical behavior of Al-Bi-Zn-Ga-In alloy in alkaline solution[J]. J. Chin. Rare Earth Soc., 2010, 28(4): 281 (李冰, 颜灵光, 陈彦等. Al-Bi-Zn-Ga-In合金阳极行为的研究[J]. 中国稀土学报, 2010, 28(4): 281)
[8] Zeng X X, Wang J M, Wang Q L, et al. The effects of surface treatment and stannate as an electrolyte additive on the corrosion and electrochemical performances of pure aluminum in an alkaline methanol-water solution[J]. Mater. Chem. Phys., 2010, 121(3): 459
[9] Jafarian M, Olyaei H M B, Gobal F, et al. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries[J]. Mater. Chem. Phys., 2013, 143(1): 133
[10] Amin M A, EI-Rehim S S A, El-Sherbini E E F, et al. Polyacrylic acid as a corrosion inhibitor for aluminum in weakly alkaline solutions. Part I: Weight loss, polarization, impedance EFM and EDX studies[J]. Corros. Sci., 2009, 51(3): 658
[11] Abiola O K, Otaigbe J O E. The effects of Phyllanthus amarus extract on corrosion and kinetics of corrosion process of aluminum in alkaline solution[J]. Corros. Sci., 2009, 51(11): 2790
[12] Abdel-Gaber A M, Khamis E, Abo-Eldahab H, et al. Novel package for inhibition of aluminium corrosion in alkaline solutions[J]. Mater. Chem. Phys., 2010, 124(1): 773
[13] Elango A, Periasamy V M, Paramasivam M. Study on polyaniline-ZnO used as corrosion inhibitors of 57S aluminium in 2 M NaOH solution[J]. Anti-Corros. Method. Mater., 2009, 56(5): 266
[14] Wang J B, Wang J M, Shao H B, et al. The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol-water mixed solutions[J]. Mater. Sci., 2009, 60(4): 269
[15] Wang X Y, Wang J M, Shao H B, et al. Influences of zinc oxide and an organic additive on the electrochemical behavior of pure aluminum in an alkaline solution[J]. J. Appl. Electrochem., 2005, 35(2): 213
[16] El Abedin S Z, Saleh A O. Characterization of some aluminium alloys for application as anodes in alkaline batteries[J]. J. Appl. Electrochem., 2004, 34: 331
[17] Zhao T P, Mu G N. The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid[J]. Corros. Sci., 1999, 41(10): 1937
[18] Deng S D, Li X H, Liu J G, et al. Corrosion inhibition by surfactants for industrial pure aluminum in NaOH solution[J]. Total Corros. Control, 2011, 25(5): 38 (邓书端, 李向红, 刘军国等. NaOH溶液中表明活性剂对工业纯铝的缓蚀作用[J]. 全面腐蚀控制, 2011, 25(5): 38)
[19] NACE Standard RP0775-20058. Preparation insallation, analysis and interpretation of corrosion coupons in oilfield operations RP0775-20058. Preparation insallation, analysis and interpretation of corrosion coupons in oilfield operations[S]
[20] Bentiss F, Lebrini M, Lagrene'e M. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis (n-thienyl) -1,3,4-thiadiazoles/hydrochloric acid system[J]. Corros. Sci., 2005, 47(12): 2915
[21] Chu D, Savinell R F. Experimental data on aluminum dissolution in KOH electrolytes[J]. Electrochim. Acta, 1991, 36(10): 1631
[22] Doche M L, Rameau J J, Durand R, et al. Electrochemical behavior of aluminium in concentrated NaOH solutions[J]. Corros. Sci., 1999, 41(4): 805
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[9] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[11] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[13] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[14] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[15] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.