Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 211-217    DOI: 10.11902/1005.4537.2013.117
  本期目录 | 过刊浏览 |
熔盐电堆的材料腐蚀
徐雅欣, 曾潮流()
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Corrosion of Materials for Molten Salt Reactor
XU Yaxin, ZENG Chaoliu()
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1950 KB)   HTML
摘要: 

熔盐反应堆是一种以熔融盐为冷却剂和核燃料的反应堆。作为6种第四代核电站概念堆之一,熔盐堆正日益受到人们的关注。材料的腐蚀问题是熔盐堆发展过程中面临的一个技术挑战。为此,相关研究机构开展了大量研究,并取得了积极进展。本文对材料在熔融氟化物中的腐蚀机制、腐蚀行为以及抗蚀材料发展现状等方面的研究进行了综述。

关键词 熔盐反应堆氟化物材料腐蚀    
Abstract

A molten salt reactor (MSR) is a kind of nuclear fission reactors using a molten salt mixture as the primary coolant and fuel. As one of the generation IV reactors MSR has received an increasing attention. The corrosion of materials is one of the technical obstacles to the development of MSR, and thus has been investigated extensively. Up to now, great progresses have been achieved<br>in the study of the corrosion of materials in MSR environments. This paper presents a comprehensive review of the progress in research work on the corrosion of materials for MSR.

Key wordsmolten salt reactor    fluorides    material corrosion
收稿日期: 2013-07-19     
ZTFLH:  TQ050.9  
基金资助:国家自然科学基金项目(51271190)资助
作者简介: null

徐雅欣,女,1985年生,博士生,研究方向为高温腐蚀与防护

引用本文:

徐雅欣, 曾潮流. 熔盐电堆的材料腐蚀[J]. 中国腐蚀与防护学报, 2014, 34(3): 211-217.
Yaxin XU, Chaoliu ZENG. Corrosion of Materials for Molten Salt Reactor. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 211-217.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.117      或      https://www.jcscp.org/CN/Y2014/V34/I3/211

图1  典型金属氟化物在850 ℃下的Gibbs形成自由能[5]
图2  
Salt mixture ZrF4 or
BeF2
mol.%
[UF4]
mol.%
[Cr] at
600 ℃
10-6 mol
[Cr] at
800 ℃
10-6 mol
FLiNaK 0 2.5 1100 2700
LiF-ZrF4 48 4.0 2900 3900
NaF-ZrF4 50 4.1 2300 2550
NaF-ZrF4 47 4.0 1700 2100
NaF-ZrF4 41 3.7 975 1050
KF-ZrF4 48 3.9 1080 1160
NaF-LiF-ZrF4
(22-22-23)
23 2.5 550 750
LiF-BeF2 48 1.5 1470 2260
表1  Cr在不同熔盐体系中的平衡溶解浓度[3]
图3  不同合金在FLiNaK中850 ℃下腐蚀500 h的质量损失[13]
图4  
[1] Yang M J, Ren J S, Zhou Z W. Introduction of R&D on generation IV nuclear energy system[J]. Int. Elec. Power China, 2004, 8(5): 30-35
[1] (杨孟嘉, 任俊生, 周志伟. 第4代核能系统研发介绍[J]. 国际电力, 2004, 8(5): 30-35)
[2] Grimes W R. Fluid Fuel Reactors-Chapter 13 [M]. New Jersey: Addison-Wesley, 1958
[3] Williams D, Toth L, Clarno K. Assessment of candidate molten salt coolants for the advanced high temperature reactor (AHTR) [R]. Department of Energy, United States, 2006
[4] Sabharwall P, Ebner M, Sohal M, et al. Molten salts for high temperature reactors: university of wisconsin molten salt corrosion and flow loop experiments-Issues identified and path forward [R]. Idaho National Laboratory, INL/EXT-10-18090, 2010
[5] Olson L C, Ambrosek J W, Sridharan K, et al. Materials corrosion in molten LiF-NaF-KF salt[J]. J. Fluorine Chem., 2009, 130(1): 67-73
[6] Misra A K, Daniel W J. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400K [R]. NASA Technical Memorandum89913 AIAA-87-9226, 1987
[7] Delpech S, Cabet C, Slim C, et al. Molten fluorides for nuclear applications[J]. Mater. Today, 2010, 13(12): 34-41
[8] Delpech S, Merle-Lucotte E, Auger T, et al. MSFR: Material issues and the effect of chemistry control [A]. GIF Symposium [C]. Paris, 2009
[9] Williams D, Toth L, Clarno K. Assessment of candidate molten salt coolants for the advanced high temperature reactor (AHTR) [R]. Department of Energy, United States, 2006
[10] Ignat'ev V V, Surenkov A I, Gnidoi I P, et al. Investigation of the corrosion resistance of nickel-based alloys in fluoride melts[J]. At. Energ., 2006, 101(4): 730-738
[11] Koger J W, Litman A P. Mass transfer between Hastelloy N and Haynes alloy no. 25 in a molten sodium fluoroborate mixture [R]. Oak Ridge National Laboratory, ORNL-TM-3488, 1971
[12] Fabre S, Cabet C, Cassayre L, et al. Electrochemical study of the corrosion of metals in moltenfluorides[J]. Mater. Sci. Forum, 2008595-598: 483-490
[13] Olson L C. Materials corrosion in molten LiF-NaF-KF eutectic salt [D]. University of Wisconsin-Madison, 2009
[14] Koger J W. Effect of FeF2 addition on mass transfer in a Hastelloy N-LiF-BeF2-UF4 thermal converction loop system [R]. Oak Ridge National Laboratory, ORNL-TM-4188, 1972
[15] Sohal M S, Ebner M A, Sabarwal l P, et al. Engineering database of liquid salt thermophysical and thermochemical properties [R]. Idaho National Laboratory, 2010
[16] Olson L, Sridharan K, Anderson M, et al. Intergranular corrosion of high temperature alloys in molten fluoride salts[J]. Mater. High Temp., 2010, 27(2): 145-149
[17] Kondo M, Nagasaka T, Tsisar V, et al. Corrosion of reduced activation ferritic martensitic steel JLF-1 in purified Flinak at static and flowing conditions[J]. Fusion Eng. Des., 2010, 85(7-9): 1430-1436
[18] Santarini G. Fused-salts-problems of corrosion and electrochemistry in the nuclear domain[J]. J. Nucl. Mater., 1981, 99: 269-283
[19] You B J. Study on corrosion behavior of Nickel-based alloys in FLiNaK molten salt [D]. Hsinchu: National TsingHua Univisersity, 2010
[19] (游柏坚. 镍基高温合金于FLINAK熔盐之腐蚀行为研究 [D]. 新竹: 国立清华大学, 2010)
[20] Kondo M, Nagasaka T, Xu Q, et al. Corrosion characteristics of reduced activation ferritic steel, JLF-1 (8.92Cr-2W) in molten salts Flibe and Flinak[J]. Fusion Eng. Des., 2009, 84(7-11): 1081-1085
[21] Briggs R B. Molten salt reactor program semiannual progress report for period ending [R]. Oak Ridge National Laboratory, ORNL-3282, 1962
[22] Manly W D, Coobs J H, Devan J H, et al. Metallurgical problems in molten fluoride system [A]. International Conference on the Peaceful Uses of Atomic Energy [C]. Geneva: Oak Ridge National Laboratory, 1958
[23] Keiser J R. Compatibility studies of potential molten-salt breeder reactor materials in molten fluoride salts [R]. Oak Ridge National Laboratory, ORNL-TM-5783, 1977
[24] McCoy H E Jr. Status of molten development for molten salt reactors [R]. Oak Ridge National Laboratory, ORNL-TM-5920, 1978
[25] McCoy H E Jr. Influence of Ti, Zr, and Hf Additions on the resistance of modified Hastelloy-N to irradiation damage [R]. Oak Ridge National Laboratory, ORNL-TM-3064, 1971
[26] Watanabe T, Kondo M, Nagasaka T, et al. Corrosion characteristic of AlN, Y2O3, Er2O3 and Al2O3 in flinak for molten salt blanket system[J]. J. Plas. Fusion Res., 2010, 9: 342-347
[1] 杨丹,李定林,黄彦良,华丕龙,赵霞,彭鹏,王秀通. 海水抽水蓄能电站的金属腐蚀和选材问题研究现状[J]. 中国腐蚀与防护学报, 2019, 39(1): 1-8.
[2] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[3] 丁祥彬,孙华,俞国军,周兴泰. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[4] 杨斌,檀傈锰,田勇,张利欣,金莹. 材料腐蚀数据共享平台构建方法研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 214-218.
[5] 刘新宽; 向阳辉; 胡文彬 . 镁合金化学镀镍层的结合机理[J]. 中国腐蚀与防护学报, 2002, 22(4): 233-236 .