Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 46-52    DOI: 10.11902/1005.4537.2013.038
  本期目录 | 过刊浏览 |
H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响
王峰1,2(), 韦春艳3, 黄天杰1,4, 崔中雨5, 李晓刚5
1. 国家能源CO2驱油与埋存研发 (实验) 中心 松原 138000
2. 东北石油大学 提高油气采收率教育部重点实验室 大庆 163318
3. 吉林油田公司扶余采油厂 松原 138003
4. 吉林油田公司采油工艺研究院 松原 138003
5. 北京科技大学腐蚀与防护中心 北京 100083
Effect of H2S Partial Pressure on Stress Corrosion Cracking Behavior of 13Cr Stainless Steel in Annulus Environment Around CO2 Injection Well
WANG Feng1,2(), WEI Chunyan3, HUANG Tianjie1,4, CUI Zhongyu5, LI Xiaogang5
1. National Energy CCS-EOR R&D (Experimental) Center, Songyuan 138000, China
2. Key Laboratory for Enhancing Oil Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China
3. Fuyu Oil Production Plant, Jilin Oil Field Company, Songyuan 138003, China
4. Oil Production Technology Institute, Jilin Oil Field Company, Songyuan 138003, China
5. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3095 KB)   HTML
摘要: 

利用高压下的电化学实验及U型弯浸泡实验结合微观分析手段,研究了13Cr不锈钢在不同H2S分压下CO2注气井环空环境模拟液中的电化学特征及应力腐蚀规律。结果表明:油套管钢的刺漏现象以及环境中硫酸盐还原菌的存在使得环空环境成为复杂的高压H2S-CO2-Cl-环境,13Cr不锈钢在该种环境下具有明显的应力腐蚀敏感性。随着H2S分压的升高,13Cr不锈钢击破电位下降,应力腐蚀敏感性增强,这主要因为H2S分压的增大对不锈钢表面膜 (钝化膜及腐蚀产物膜) 的破坏作用加强。当H2S分压达到0.20 MPa时,13Cr不锈钢发生明显的应力腐蚀,断口表现为由沿晶应力腐蚀裂纹 (IGSCC) 和穿晶应力腐蚀裂纹 (TGSCC) 组成的混合断口,应力腐蚀受阳极溶解和氢致开裂共同控制。

关键词 13Cr不锈钢H2S/CO2应力腐蚀H2S分压    
Abstract

Electrochemical characteristics and stress corrosion cracking (SCC) behavior of 13Cr stainless steel were investigated by electrochemical measurements, U-bent specimen immersion test and surface analysis technique in an artificial solution with an autoclave, which aimed to simulate the annulus environment around CO2 injection well. The results showed that annulus solution around injection well was a complicated H2S-CO2-Cl- environment which generated the SCC of 13Cr stainless steel. The pitting breakthrough potential and SCC resistance of 13Cr stainless steel decreased obviously with increasing H2S partial pressure, which is associated with the deterioration of surface film (passive film and corrosion products scales) on the steel. When the H2S partial pressure exceeded 0.20 MPa (including 0.20), SCC occurred on 13Cr steel. Typical transgranular and intergranular fracture morphologies were observed, which indicated that the SCC process was mixed-controlled by both anodic dissolution and hydrogen-induced cracking.

Key words13Cr stainless steel    H2S/CO2    stress corrosion cracking    H2S partial pressure
收稿日期: 2013-04-24     
ZTFLH:  TG172  
基金资助:国家自然科学基金重点项目 (51131001);松辽盆地含CO2气藏开发及利用示范工程项目 (2012ZX05054)资助
作者简介: null

王峰,男,1973年生,高级工程师,研究方向为采气工艺、CO2驱油技术

引用本文:

王峰, 韦春艳, 黄天杰, 崔中雨, 李晓刚. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(1): 46-52.
Feng WANG, Chunyan WEI, Tianjie HUANG, Zhongyu CUI, Xiaogang LI. Effect of H2S Partial Pressure on Stress Corrosion Cracking Behavior of 13Cr Stainless Steel in Annulus Environment Around CO2 Injection Well. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 46-52.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.038      或      https://www.jcscp.org/CN/Y2014/V34/I1/46

图1  13Cr不锈钢的金相组织
Condition Temperarure / ℃ pH Corrosion
inhibitor
CO2 partial
pressure / MPa
Total
pressure / MPa
H2S partial
pressure / MPa
P C O 2 / P H 2 S
1 25 4.0 1×10-3 4.0 9.0 0 ---
2 25 4.0 1×10-3 4.0 9.0 0.05 80
3 25 4.0 1×10-3 4.0 9.0 0.10 40
4 25 4.0 1×10-3 4.0 9.0 0.20 20
5 25 4.0 1×10-3 4.0 9.0 0.30 13.3
表1  13Cr不锈钢电化学测试条件
图2  13Cr不锈钢在不同H2S分压条件下的极化曲线
图3  13Cr不锈钢在不同H2S分压下的EIS谱
H2S partial
pressure / MPa
Rs / Ωcm2 Qf / μFcm-2 n1 Rf / Ωcm2 CPEdl / μFcm-2 n2 Rct / Ωcm2
0 18.45 8.79×10-5 0.91 9.51×104 2.97×10-4 0.99 4.40×104
0.05 16.66 1.20×10-4 0.862 7.54×104 5.50×10-4 1 2.40×104
0.10 18.12 2.00×10-5 1 10.18 8.30×10-5 0.817 5.13×104
0.20 16.78 1.95×10-5 1 7.9 1.01×10-4 0.814 3.60×104
0.30 18.45 6.30×10-5 0.623 568.4 4.89×10-5 0.867 3.58×104
表2  13Cr不锈钢在不同H2S分压下的EIS谱拟合结果
图4  极化电阻 (Rp)、维钝电流 (ipass) 及膜电阻 (Rf) 随H2S分压的变化曲线
图5  13Cr不锈钢U型弯试样浸泡后的宏观形貌
图6  13Cr不锈钢U型弯断裂时间随H2S分压的变化曲线
图7  13Cr不锈钢U型弯浸泡后的断口形貌
[1] Zhang G C, Lin G F, Sun Y L, et al. Research on corrosion resistance of 13Cr stainless steel[J]. Total Corros. Control, 2011, 25(4): 16-20
[1] (张国超, 林冠发, 孙育禄等. 13Cr不锈钢腐蚀性能的研究现状与进展[J]. 全面腐蚀控制, 2011, 25(4): 16-20)
[2] Lin G F, Gu X Y, Bai Z Q, et al. Spectrum analysis of CO2 corrosion products on 13Cr tubing steel [A]. Seventh National Conference on Surface Engineering [C]. Wuhan, 2008: 335-340
[2] (林冠发, 骨勋源, 白真权等. 13Cr油管钢CO2腐蚀产物膜的能谱分析 [A]. 第七届全国表面工程学术会议 [C]. 武汉, 2008: 335-340
[3] Chen Y,Bai Z Q,Lin G F. CO2 corrosion resistance of common 13Cr steel under high temperature and high pressure [J]. Total Corros. Control, 2007, 21(2): 11-14
[3] (陈尧, 白真权, 林冠发. 普通13Cr钢在高温高压下的抗CO2腐蚀性能[J]. 全面腐蚀控制, 2007, 21(2): 11-14
[4] Dong X H, Zhao G X, Feng Y R, et al. Study of CO2 corrosion behavior of 13Cr steel[J]. Oil Field Equip., 2003, 32(6): 1-3
[4] (董晓焕, 赵国仙, 冯耀荣等. 13Cr不锈钢的CO2腐蚀行为研究[J]. 石油矿场机械, 2003, 32(6): 1-3)
[5] Zhang H, Zhao Y L, Jiang Z D. Effects of temperature on the corrosion behavior of 13Cr martensitic stainless steel during exposure to CO2 and Cl- environment[J]. Mater. Lett., 2009, 59(27): 3370-3374
[6] Ikeda A, Mukai S, Ueda M. Corrosion behavior of 9 to 25% Cr steels in wet CO2 environments[J]. Corrosion, 1985, 41(4): 185-192
[7] Mancia A. The effect of environmental modification on the sulphide stress corrosion cracking resistance of 13Cr martensitic stainless steel in H2S-CO2-Cl- systerms[J]. Corros. Sci., 1987, 27(10): 1225-1237
[8] Han Y, Li D D, Lin G F, et al. Corrosion resitance of 13Cr stainless steel in the Cl-, CO2 environment with microamount H2S[J]. Phys. Test. Chem. Anal., 2010, 46(3)A: 145-150
[8] (韩燕, 李道德, 林冠发等. Cl-, CO2和微量H2S共存时13Cr不锈钢的腐蚀性能[J]. 理化检验, 2010, 46(3)A: 145-150)
[9] Zhang Y M, Zang H Y, Dong A H, et al. Corrosion behavior analysis of 13Cr steel oil pipe[J]. Corros. Sci. Prot. Technol., 2009, 21(5): 499-501
[9] (张亚明, 臧晗宇, 董爱华等. 13Cr钢油管腐蚀原因分析[J]. 腐蚀科学与防护技术, 2009, 21(5): 499-501)
[10] Cai R, Zhu S D, Li F G, et al. Corrosion reason analysis of 13Cr tubing steel[J]. Corros. Sci. Prot. Technol., 2012, 24(4): 355-356)
[10] (蔡锐, 朱世东, 李发根等. 某油井管用13Cr油管腐蚀原因分析[J]. 腐蚀科学与防护技术, 2012, 24(4): 355-356)
[11] Javaherdashti R. Microbiologically Influenced Corrosion: An Engineering Insight [M]. London: Springer, 2008
[12] Sardisco J B, Wright W B, Greco E C. Corrosion of iron in an H2S-CO2-Cl- systerm: corrosion film properties on pure iron[J]. Corrosion, 1963, 19(10): 354-359
[13] Choi Y S, Nesic S, Ling S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions[J]. Electrochim. Acta, 2011, 56(4): 1752-1760
[14] Pots F M, Jhon R C, Rippon I J, et al. Improvements on de-Waard Milliams corrosion prediction and application to corrosion management [A]. Corrosion/2002 [C]. Denver: NACE, 2002: 235
[15] Lv X H, Zhao G X, Wang Y, et al. SCC resistance of super 13Cr martensitic stainless steel[J]. J. Mater. Eng., 2011, (2): 17-25
[15] (吕祥鸿, 赵国仙, 王宇等. 超级13Cr马氏体不锈钢抗SCC性能研究[J]. 材料工程, 2011, (2): 17-25)
[16] Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking behavior of two stainless steels in hydrogen sulfide environment[J]. J. Univ. Sci. Technol. Beijing, 2009, 31(3): 319-323
[16] (刘智勇, 董超芳, 李晓刚等. 硫化氢环境下两种不锈钢的应力腐蚀开裂行为[J]. 北京科技大学学报, 2009, 31(3): 319-323)
[17] Kermani B, Esaklul K A, Martin J W. Materials design strategy: effects of H2S/CO2 corrosion on materials selection [A]. Corrosion/2006 [C]. San Diego: NACE, 2006: 121
[18] Qiao L, Mao X. Thermodynamic analysis on the role of hydrogen in anodic stress corrosion cracking[J]. Acta Metall. Mater., 1995, 43(11): 4001-4006
[19] Liu Z Y, Dong C F, Li X G, et al. Effect of electrochemical property of UNSJ91450 stainless steel on stress corrosion cracking in hydrogen sulfide solutions[J]. Electrochemistry, 2009, 15(2): 157-162
[19] (刘智勇, 董超芳, 李晓刚等. H2S环境中UNSJ91450不锈钢的电化学行为对SCC的影响[J]. 电化学, 2009, 15(2): 157-162)
[20] Liu Z Y, Dong C F, Li X G, et al. Stress corrosion cracking behavior of 35CrMo an 00Cr13Ni5Mo steels in hydrogen sulfide solutions[J]. J. Chem. Ind. Technol., 2008, 59(10): 2561-2567
[20] (刘智勇, 董超芳, 李晓刚等. 35CrMo和00Cr13Ni5Mo硫化氢环境应力腐蚀开裂[J]. 化工学报, 2008, 59(10): 2561-2567)
[21] Zhou C S,Zheng S Q,Chen C F,et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon steel [J]. Corros. Sci., 2013, 67: 184-192
[22] Yang J W, Zhang L, Ding R M, et al. H2S/CO2 corrosion behavior of X60 pipeline steel in wet gas and solution[J]. Acta Metall. Sin., 2008, 44(11): 1366-1371
[22] (杨建炜, 张雷, 丁睿明等. X60管线钢在湿气和溶液介质中的H2S/CO2腐蚀行为[J]. 金属学报, 2008, 44(11): 1366-1371)
[1] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[2] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[5] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[6] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[7] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[8] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[9] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[12] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[13] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[14] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[15] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.