中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护国家重点实验室 青岛 266101
中图分类号: TG174.461
文献标识码: 1005-4537(2017)03-0247-07
通讯作者:
收稿日期: 2016-03-19
网络出版日期: 2017-06-20
版权声明: 2017 《中国腐蚀与防护学报》编辑部 《中国腐蚀与防护学报》编辑部
基金资助:
作者简介:
作者简介 高洪扬,男,1991年生,硕士生
展开
摘要
采用海水压力罐模拟深海高压环境,利用电化学阻抗谱 (EIS)、三维视频显微镜和扫描电子显微镜 (SEM) 等手段,对比研究了改性环氧防腐涂层在常压海水环境和模拟深海高压环境 (6 MPa海水压力) 下的失效行为。结果表明,试样在深海高压环境下浸泡30 d后,涂层阻抗已降低到105 Ωcm2;而常压环境下,涂层阻抗仅降低到108 Ωcm2,深海高压环境促使涂层更快地吸水达到饱和状态,高压环境导致涂层下的金属腐蚀活性面积不断增大,基体金属腐蚀速率不断增加。SEM观察表明,高压导致环氧防腐涂层中的颜填料发生脱附,使涂层/金属基体界面弱化,腐蚀活性表面积增大,从而导致涂层破损和基体腐蚀。
关键词:
Abstract
The degradation behavior of a modified epoxy resin coating was comparatively studied in sea water at atmospheric pressure and in a simulated deep-sea environment with high hydrostatic pressure of 6 MPa by means of electrochemical impedance spectroscopy (EIS), 3D optical microscope and scanning electron microscope (SEM). The results showed that the resistance of the coating decreased to 105 Ωcm2 after 30 d immersion under high hydrostatic pressure, while that decreased to 108 Ωcm2 at atmospheric pressure. The deep-sea environment can induce the enlargement of the active area and shorten the water-saturation process of coatings, therewith, the corrosion rate of the substrate was instantly accelerated. SEM showed that the hydrostatic pressure can deteriorate the attachment of pigments with the epoxy and weaken the adhesion between the epoxy coatings and the metal substrate. In this case, the active area of corrosion was enlarged, whilst the degradation of coatings and the corrosion of the steel substrate simultaneously occurred.
Keywords:
深海环境是一种特殊的腐蚀介质环境,与浅海环境相比,通常具有高静压力、低溶解氧浓度和低温等特点[1,2]。这些环境因素的差异使得金属构件和保护涂层等在深海环境中有不同于浅海环境的腐蚀损伤行为[3-9]。
环氧类有机涂层作为一种重要的防腐手段[10,11]广泛应用于海洋环境中,涂层的完整性、涂层电阻、湿附着力等性能[12-14]直接影响到防护效果。由于采用实海实验成本高、难度大[15],因此采用室内模拟深海环境的方法对涂层进行性能评价是一种便捷有效的手段。
目前,关于深海环境对有机涂层性能影响的研究还不是很多,已开展的工作主要集中于水的传输机制[16]和涂层/基体的结合机制上[17]。在深海环境中,高静水压力是一个对有机涂层防护性能有重要影响的因素,其作用机制尚不十分明了。了解各种涂层在深海高压环境下的腐蚀损伤行为和机理对改进现有涂层的保护性能、发展新型高性能深海防腐涂层具有重要的意义。
本文采用海水压力罐模拟深海高压环境,采用电化学阻抗谱 (EIS)、三维视频显微镜、扫描电子显微镜 (SEM) 等手段对浸泡在常压海水环境和模拟深海高压环境 (6 MPa海水压力) 中的改性环氧防腐涂层性能进行了对比研究,分析探讨了深海高压环境对该涂层失效行为的影响以及作用机理,以期为环氧防腐涂层的工程化应用以及新型深海防腐涂层的开发和改进提供技术依据。
基体金属材料为Q235钢,试样尺寸为30 mm×30 mm×3 mm,将其表面进行喷砂处理达到Sa 2.5级,经丙酮除油、无水乙醇除水后干燥。然后,采用手工方式刷涂改性环氧防腐涂层,并将试样放置于恒温箱中,控制条件为:40 ℃/24 h+室温 (25 ℃,30%RH)/168 h (7 d),以获得厚度均匀一致的涂层。
本实验采用的改性环氧防锈漆 (H44-61G) 由七二五所厦门分部提供。该防锈漆拟用于深海钢结构物表面防腐,实际工程中通常采用重防腐涂层体系,由2~3道改性环氧防腐涂层组成,涂膜厚度达到300~500 μm。由于该厚膜涂层在实验室浸泡条件下短期内不会产生明显变化,为便于研究该涂层的失效行为,本研究工作采用了较薄的涂层试样,涂层干膜厚度控制在 (80±5) μm。实验前采用KL-8型数字式直流电火花检漏仪检测涂层完整性,并采用MiniTest 600涂层测厚仪测量涂层厚度,每个试样选取5个点测试,最后取平均值。
本实验包括常压海水环境和模拟深海高压海水环境 (模拟水深约600 m处海水压力)。深海环境中的压力、温度、溶解氧等因素都和表层海水存在较大差别,每种因素都会对带涂层钢的腐蚀行为产生影响。本文只对比研究了其他因素相同时,海水压力对涂层失效的影响。常压海水浸泡实验在装有海水的烧杯中进行。采用Cortest公司的SSRT/Constant load/Low Cycle Fatigue测试系统模拟高压海水环境,压力控制在 (6.0±0.1) MPa。腐蚀介质为青岛本地天然海水,介质温度为室温 (25±1) ℃。
将进行电化学测试的带涂层钢试样连接导线后,采用环氧树脂进行封装,预留20 mm×20 mm的工作面积,分别置于两种模拟环境中进行浸泡实验。浸泡期间,选取2,4,9,12,16和30 d等6个测试周期点,定期将常压海水环境和模拟高压海水环境下的带涂层钢试样取出进行EIS测试。测试使用Princeton PAR2273电化学工作站,采用三电极体系,工作电极为带涂层钢试样,辅助电极为Pt电极,参比电极为饱和KCl甘汞电极。测试在腐蚀电位下进行,扰动信号为幅值50 mV的正弦波,测试频率设定为105~10-2 Hz。测试结束后,采用ZSimpWin软件对EIS数据进行拟合分析。
采用HIROXKH-8700三维视频显微镜对试样进行形貌观察,将浸泡实验前后试样的形貌进行对比分析。
依照ASTM D4541-2009 《用便携式附着力测试仪测定涂层拉脱强度》标准,选用PosiTest拉拔式附着力测试仪将浸泡后的涂层拉脱,锭子直径为20 mm,记录拉拔后涂层的破坏形式和拉拔强度的大小,将带有拉脱后涂层的锭子置于Philips XL30场发射扫描电子显微镜下 (FE-SEM) 进行形貌观察,操作电压为20 kV。
2.1.1 常压海水环境下的EIS 图1是常压海水环境条件下,改性环氧涂层的EIS谱随浸泡时间的变化。可以看出,在30 d的实验周期中,尽管涂层的阻抗逐渐降低,但涂层的阻抗谱特征没有发生明显的变化,Nyquist图始终为一个容抗弧。从相位角图中可以看出,EIS高频区相位角接近90°,说明该有机涂层相当于一个电阻值很大、电容值很小的隔绝层,对海水起到良好的阻隔作用。然而,涂层在浸泡期间不可避免的会吸水,随着浸泡时间的增加,涂层的低频阻抗模值减小,此时涂层的电容值增大而电阻值减少。基于涂层的EIS特征,可以采用如图2所示等效电路Rs(CcRc) 进行拟合。其中,Rs为溶液电阻,Rc为涂层电阻,Cc为涂层电容。
图1 常压海水环境下浸泡不同时间后改性环氧涂层的EIS谱 (散点为测量数据,实线为拟合结果)
Fig.1 Nyquist (a, b) and Bode (c, d) plots of the modified epoxy coating immersed in sea water for different time at atmospheric pressure (Scattered points: experimental data, solid lines: fitting results)
2.1.2 模拟深海高压海水环境下的EIS 图3为模拟深海高压海水环境下不同浸泡时间后改性环氧涂层的EIS谱。可以看出,在30 d的浸泡周期内,涂层阻抗谱变化可以分为两个阶段:浸泡初期 (0~9 d),阻抗谱只有一个容抗弧,相位角约等于90°,有机涂层可视作一个良好的屏蔽层;此时,Nyquist图并不是一个规则的半圆,即存在弥散效应,可采用等效电路Rs(QcRc) 进行拟合。9 d之后,阻抗谱出现两个容抗弧,呈现出两个时间常数,这其实是随着涂层吸水逐渐达到饱和,腐蚀性溶液通过扩散逐渐到达涂层/基体界面处,形成腐蚀微电池对金属基体造成腐蚀,此时可以采用等效电路Rs(Qc(Rc(QdlRct))) 进行拟合[18](见图4)。其中,Qc为涂层电容,Qdl为双电层电容,Rct为电荷转移电阻。考虑存在弥散效应,采用常相位角元件近似替代电容。
2.1.3 常压和高压两种海水环境下涂层电化学参数的比较 低频阻抗模值可以比较直观地展现涂层性能随浸泡时间的变化,图5给出了0.01 Hz时涂层阻抗模值随时间的变化曲线。可以看出,两种环境下涂层的低频阻抗模值都随浸泡时间逐渐降低,初期下降较快,后期降低较慢。相比于常压海水环境,模拟深海高压海水环境在浸泡9 d后涂层阻抗发生急剧下降,30 d后已降低至约3×105 Ωcm2,这表明涂层已失去防护作用,涂层下的金属已经发生腐蚀。而常压海水环境下,30 d后涂层阻抗模值仍维持在约3×108 Ωcm2,表明涂层仍有较好的保护作用[11]。浸泡初期,在模拟深海高压海水环境中涂层阻抗高于在常压海水环境中的,这可能是涂层试样差异 (如涂层厚度存在一定差异) 造成的。但随着浸泡时间延长,高压海水环境中涂层加速失效,表明该环境条件比常压海水条件更为严苛。
图3 模拟深海高压海水环境下不同浸泡时间后改性环氧涂层的EIS谱 (散点为测量数据,实线为拟合结果)
Fig.3 Nyquist (a, b) and Bode (c, d) plots of the modified epoxy coating immersed in sea water for different time at 6 MPa (Scattered points: experimental data, solid lines: fitting results)
图4 等效电路Rs(QcRc) 和Rs(Qc(Rc(QdlRct))) 示意图
Fig.4 Equivalent circuit models of Rs(QcRc) (a) and Rs(Qc(Rc(QdlRct))) (b)
图5 常压海水环境和高压海水环境下涂层在0.01 Hz时的阻抗随浸泡时间的变化
Fig.5 Impendences determined at 0.01 Hz for the epoxy coating after immersion for different periods in sea water at atmospheric pressure and 6 MPa pressure
为了对比分析涂层的性能变化,采用图2和4中的等效电路,对改性环氧涂层在两种测试环境下的阻抗数据进行了拟合分析,获得的等效电路参数变化见图6和7。
Cc是衡量涂层性能的一个重要参数,取决于涂层厚度和介电常数,是反映涂层吸水特性的一个重要指标。从图6可以看出,改性环氧涂层在两种测试环境下,Cc都经历了逐渐增加并稳定在一个值附近的过程;但是在高压海水环境条件下,Cc达到稳定值的速度更快,这实际上反映了模拟深海环境条件下,涂层更快地吸水达到饱和的过程。
图6还给出了Rc随浸泡时间的变化。可以看出,改性环氧涂层在常压海水浸泡条件下,Rc从初期的1010 Ωcm2降低到108 Ωcm2数量级,这表明涂层仍具有很好的防护效应。而在模拟深海高压海水环境条件下,涂层电阻下降幅度更大,在16 d后降低到105 Ωcm2数量级,涂层失去防护作用。
图6 常压和高压海水环境中改性环氧涂层的电容和电阻随浸泡时间的变化
Fig.6 Capacitance (a) and pore resistance (b) vs time curves of the modified epoxy coating immersed in sea water under atmospheric and 6 MPa pressures
从图7中可以看出,在模拟高压海水环境下,涂层在浸泡9 d后基体金属发生腐蚀,Qdl不断增加,表明涂层下脱附的面积不断增大,参与腐蚀反应的表面扩大;而Rct则逐渐减小,这表明随着浸泡时间的延长,基体金属腐蚀速率逐渐增大,腐蚀越来越严重。
图7 模拟深海高压海水环境中浸泡9 d后涂层的Qdl和Rct随时间的变化
Fig.7 Qdl (a) and Rct (b) vs time curves of the coated steel after immersion in sea water for 9 d under 6 MPa pressure
根据有机涂层吸水体积计算公式[18],可以依次计算出不同浸泡时间后有机涂层的吸水率:
式中,Xv为有机涂层吸水体积分数;Cc(0) 和Cc(t) 分别为浸泡时间为0和t后的涂层电容,可由阻抗谱数据解析求得;80是水在25 ℃时的介电常数。改性环氧涂层在两种环境条件下吸水率随浸泡时间的变化如图8所示。
图8 改性环氧涂层在常压和高压海水环境条件下吸水率随浸泡时间的变化
Fig.8 Evolutions of water absorption rates of the modified epoxy coating immersed in sea water under atmospheric and 6 MPa pressures
从改性环氧涂层吸水率的变化曲线可以看出,在常压海水环境条件下,涂层经历了逐渐吸水并达到饱和的过程,饱和吸水率约在7%;而在高压海水环境条件下,涂层更快地吸水并达到饱和。
图9和10为改性环氧涂层在两种测试环境中浸泡前后的三维视频图像。可以看出,涂层在浸泡前表面平整,没有明显可见的微孔或者缺陷,和电火花检漏仪的检测结果一致。浸泡30 d后,在常压海水环境下,改性环氧涂层表面并没有发生特别明显变化;而在高压海水环境下,改性环氧涂层表面出现一个明显的腐蚀点,这是由于在模拟高压海水环境的作用下,水更容易通过涂层扩散至基底处,随着浸泡时间不断延长,水等腐蚀性介质在涂层/基体界面处不断聚集,形成腐蚀微电池,使基体产生腐蚀,并导致涂层薄弱处破损,造成涂层失效。
图9 改性环氧涂层在两种模拟海水环境浸泡前的表面形貌
Fig.9 Surface morphologies of the modified epoxy coating before immersion test in sea water at atmo-spheric (a) and 6 MPa (b) pressures
将浸泡后的两种试样按照标准进行拉拔实验,拉拔结果均为涂层的内聚破坏,常压下浸泡后的涂层附着力为6.12 MPa,高压下浸泡后的涂层附着力为4.65 MPa,而未浸泡涂层试样的附着力为10.88 MPa (平行样测试的平均值,平行样涂层厚度80 μm)。从附着力测试的结果可以看出,高压下浸泡后的涂层附着力下降比常压下浸泡后的明显。将拉脱后涂层置于SEM下观察 (见图11),可以看到,在常压海水环境下,浸泡后的改性环氧涂层仅有少部分颜填料脱附;而在模拟高压海水环境下,改性环氧涂层表面颜填料脱附现象更明显,这是由于深海压力的作用使得颜填料与树脂界面结合弱化[17],更容易产生脱附。
有机涂层的屏蔽作用同涂层中颜填料状态密切相关。理想情况下涂层颜填料应该是细小均匀地分布在涂层中,阻挡水等腐蚀性介质的渗透。颜填料脱附使得水的有效扩散路径相对缩短,水更易沿着颜填料脱附形成的界面通道渗透过涂层,到达涂层/基体界面处,导致腐蚀发生。
图10 改性环氧涂层在两种模拟环境中浸泡30 d后的形貌
Fig.10 Surface morphologies of the modified epoxy coating after immersion in sea water for 30 d at atmospheric (a) and 6 MPa (b) pressures
图11 常压和高压海水环境条件下浸泡实验结束后涂层拉脱处的SEM像
Fig.11 SEM images of the modified epoxy coating immersed in sea water for 30 d at atmospheric (a) and 6 MPa (b) pressures after pull-off tests
(1) 相比于常压海水环境,改性环氧涂层在模拟深海高压海水环境条件下更容易失效。涂层在常压海水中浸泡30 d后,阻抗仍维持在108 Ωcm2数量级,表明涂层仍处于完好状态;而在高压 (6 MPa) 海水中浸泡30 d后阻抗已降到105 Ωcm2数量级,表明涂层已失去保护作用,金属基体已发生腐蚀。
(2) 涂层吸水率随浸泡时间逐渐增大,并在后期吸水逐渐达到饱和。在模拟深海高压环境条件下,涂层在第9 d吸水达到饱和,而常压海水中这一过程需要16 d。涂层吸水率在模拟深海高压海水环境中的要比在常压海水中的更大,吸水更快。
(3) 深海海水的高压作用会使改性环氧树脂涂层中的颜填料更容易脱附,并且也会使涂层/金属基体界面弱化,腐蚀活性表面积增大,从而促进涂层破损和基体腐蚀。
The authors have declared that no competing interests exist.
/
〈 |
|
〉 |