Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (3): 187-190    DOI:
技术报告 Current Issue | Archive | Adv Search |
CORROSION BEHAVIORS OF 304 STAINLESS STEEL IN LOW HARDNESS COOLING WATER CONTAINING Cl-, SO42-AND RP-98H WATER TREATMENT AGENT
QU Xiuhua; XU Chunchun; LV Guocheng; CHENG Haidong
College of Materials Science and Engineering; Beijing University of Chemical Technology;Beijing 100029
Download:  PDF(710KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The polarization curves, electrochemical noise, electrochemical impendence spectroscopy(EIS) and energy dispersive spectrometry(EDS) were employed to investigate the corrosion behaviors of 304 stainless steel (SS) in simulated low hardness cooling water containing Cl-, SO42-. The influence of RP-98H water treatment agent on the corrosion of 304 SS and the corresponding inhibition mechanism were also studied. The results showed that, corrosive ion Cl- increased the pitting susceptibility of 304 SS and SO42- reduced the effect of Cl-, while RP-98H rapidly produced a layer of film which is capable of improving the pitting potential of 304 SS and inhibiting the corrosion. RP-98H is a type of mixed water treatment agent with the inhibition efficiency over 84.8 %, and the excellent concentration for the system of 304 SS-low hardness cooling water is proved to be 100 mg/L.

Key words:  water treatment agent      pitting corrosion      low hardness cooling water      304 SS     
Received:  24 July 2007     
ZTFLH: 

TG174.4

 
Corresponding Authors:  XU Chunchun     E-mail:  chunchunxu@263.net

Cite this article: 

QU Xiuhua XU Chunchun LV Guocheng CHENG Haidong. CORROSION BEHAVIORS OF 304 STAINLESS STEEL IN LOW HARDNESS COOLING WATER CONTAINING Cl-, SO42-AND RP-98H WATER TREATMENT AGENT. J Chin Soc Corr Pro, 2009, 29(3): 187-190.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I3/187

[1]  Guo R J, Huo S Z. An investigation of pitting initiation process[J]. Chin. Soc. Corros. Prot., 1986, 6(2):113-122
     (郭瑞金, 火时中. 小孔腐蚀诱发过程的研究[J].中国腐蚀与防护学报, 1986, 6(2): 113-122)
[2]  El-egamy S S, Badawy W A, Shehata H. Passivation and pitting corrosion of stainless steel in neutral sulphate solution[J]. Corros. Prev. Control, 2000, 47(2):35-36
[3]  Yang W. Local Corrosion of Metal[M]. Beijing. Chemical Industry Press, 1995: 76-77
     (杨武. 金属的局部腐蚀[M]. 北京:化学工业出版社, 1995: 76-77)
[4]  Gang Y M. Chinese Manual of Stainless Steel for Corrosion[M]. Beijing: Chemical Industry Press,1992:364
     (冈毅民. 中国不锈钢腐蚀手册[M]. 北京: 化学工业出版社,1992: 364)
[5]  Zhai X H, Bao B R, Ge H H, et al. Influence factors on corrosion resistance of 304 stainless steel in simulated cooling water[J]. Mater. Prot., 2003, 36(4): 25-28
     (翟祥华, 包伯荣,葛红花等. 模拟冷却水中304不锈钢的耐蚀性影响因素研究[J]. 材料保护,2003, 36(4): 25-28)
[6]  Xu Z B, Zhang T H. Some problems of Zn2+saltcorrosion inhibitors[J]. Corros. Prot., 2000, 21(9): 401-403
     (徐仲斌,张天红. 有关锌盐缓蚀剂问题的进一步探讨[J]. 腐蚀与防护, 2000, 21(9):401-403)

[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[9] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[10] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[11] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[12] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[13] Chenlin DAI,Maodong LI,Bo YANG,Yue QIAO,Zhiping ZHU. Performance of Environmentally Friendly Corrosion- and Scaling-Inhibitor for Central Air Conditioner Cooling Water[J]. 中国腐蚀与防护学报, 2016, 36(5): 407-414.
[14] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[15] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
No Suggested Reading articles found!