Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (12): 1450-1454    DOI:
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE OF PILE-UP WELDING CHROMIUM CARBIDE/Ni3 Al COMPOSITE CLADDING ON DZ125 ALLOY
LI Shangping;LUO Heli CAO;Xu ZHANG Xi'e;FENG Di
High Temperature Materials Research Institute; Central Iron & Research Institute
Cite this article: 

LI Shangping LUO Heli CAO Xu ZHANG Xi'e FENG Di. MICROSTRUCTURE OF PILE-UP WELDING CHROMIUM CARBIDE/Ni3 Al COMPOSITE CLADDING ON DZ125 ALLOY. Acta Metall Sin, 2008, 44(12): 1450-1454.

Download:  PDF(1654KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A Ni-Al-Cr3C2 welding wire produced by metal-powder-core technique was pile-up welded on the surface of DZ125 alloy. During welding, the physical heat of arc and Ni-Al exothermic reaction made Ni react with Al to form Ni3Al as matrix, and the precipitated Cr3C2 dissolve again to form fine Cr-rich M3C2 and M7C3 phases distributed in matrix during solidification. The size of chromium carbide particles near the coating/substrate interface is smaller than that near the surface of welding layer due to the difference of cooling rates. In addition, alloying elements in DZ125 alloy diffused into welding melting pool, and then were carbonized or oxidized. The formed carbides and oxides are mainly influenced by the concentration of the alloying elements and the free energies of formation of these compounds. As a result, many carbides and oxides are rich in Ta, Hf, Ti and W. With reaching coating surface, these compounds decrease in amount and even disappeare.

Key words:  chromium carbide      Ni3Al      nanocrystalline      microstructure      Ni base supperalloy     
Received:  21 April 2008     
ZTFLH: 

TB333

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I12/1450

[1]Xu X Y.PhD Thesis,Beijing University of Technology, 2001 (徐向阳.北京工业大学博士学位论文,2001)
[2]Sikka V K,Deevi S C,Viswanathan S,Swindem R W, Santella M L.Intermetallics,2000;8:1329
[3]Blau P J,Devore C E.Tribology Int,1990;23:226
[4]Compilatory Group of Machine-Producing Technology and Material.Handbook of Machine-Producing Technol- ogy and Material(Second Part).Beijing:China Machine Press,1993:674 (机械制造工艺材料技术编写组.机械制造工艺材料技术手册(下册).北京:机械工业出版社,1993:674)
[5]Li S P,Feng D,Luo H L,Zhang X E,Cao X.J Iron Steel Res Int,2006;13(5):37
[6]Li S P,Feng D,Luo H L.Surf Coat Technol,2007;201: 4542
[7]Li S P,Luo H L,Feng D,Cao X,Zhang X E.Acta Metall Sin,2007;43:439 (李尚平,骆合力,冯涤,曹栩,张喜娥.金属学报,2007;43:439)
[8]Hu J,Li D Y,Llewellyn R.Wear,2005;259:6
[9]Yilmaz O,Buytoz S.Compos Sci Technol,2001;61:2381
[10]Chen R Z,She L,Zhang H W,Wang L B.J Aeronaut Mater,2000;20(4):14 (陈荣章,余力,张宏炜,王罗宝.航空材料学报,2000;20(4):141
[11]Ying R C.Principle of Molten Welding and Metal Weld- ing.Beijing:Machine Industry press,2006:79 (英若采.熔焊原理及金属材料焊接.北京:机械工业出版社,2006:79)
[12]Deevi S C,Sikka V K.Intermetallics,1997;5:17
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!