Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 10-17    DOI: 10.11902/1005.4537.2017.009
Orginal Article Current Issue | Archive | Adv Search |
Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment
Libao YU1,2, Maocheng YAN1(), Binbin WANG3, Yun SHU1, Jin XU1, Cheng SUN1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 PetroChina West Pipeline Company, Chengdou 610041, China
Download:  HTML  PDF(3149KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microbial corrosion induced by sulphate-reducing bacteria (SRB) for carbon steel Q235 beneath coating defects was studied by means of electrochemical impedance spectroscopy (EIS), polarization measurement and microscopic surface observation. Results showed that, in acid red soil environment, SRB have no significant effect on the electrochemical process during the initial environmental adaptation period. Then in the next period, the respiratory metabolic activities of the growing SRB lead to decrease of the free corrosion potential of Q235 steel and accelerate corrosion process of the carbon steel. Bacteria can react with iron oxides in the red soil, causing microbial dissimilatory reduction of iron oxides, which promotes electrochemical corrosion process of the carbon steel.

Key words:  soil corrosion      sulphate-reducing bacteria      acid soil      pipeline      electron charge transfer     
Received:  14 January 2017     
ZTFLH:  TG172.4  

Cite this article: 

Libao YU, Maocheng YAN, Binbin WANG, Yun SHU, Jin XU, Cheng SUN. Microbial Corrosion of Q235 Steel in Acidic Red Soil Environment. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 10-17.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.009     OR     https://www.jcscp.org/EN/Y2018/V38/I1/10

Fig.1  Variation of SRB number in the red soil with time
Fig.2  SEM surface morphologies of Q235 steel after embedding in sterile (a, b) and SRB-inoculated (c, d) red soil for 20 d
Fig.3  CLSM surface morphologies of Q235 steel after embedding in sterile (a) and SRB-inoculated (b) red soil for 20 d
Fig.4  Open circuit potentials of Q235 steel in the SRB-inoculated and sterile red soil
Fig.5  Nyquist (a), impedance module (b) and phase angle (c) plots of Q235 steel in the sterile red soil
Fig.6  Nyquist (a), impedance module (b) and phase angle (c) plots of Q235 steel in the SRB-inoculated red soil
Fig.7  Equivalent circuit model used for fitting EIS data: Rs(Qf(Rf(QdlRct)))
Time / d Rs / Ωcm2 Yf / Ssncm-2 nf Rf / kΩcm2 Ydl / Ssncm-2 ndl Rct / kΩcm2
Sterile soil
1 588.8 7.123×10-5 0.8335 0.3075 1.517×10-4 0.8770 2.366
3 561.1 8.340×10-5 0.7542 1.070 1.237×10-4 0.9127 4.808
5 624.8 7.274×10-5 0.6603 2.538 1.304×10-4 0.9379 6.498
10 605.8 8.173×10-5 0.7129 2.588 1.824×10-4 0.9661 5.579
15 608.9 9.339×10-5 0.6726 3.225 2.028×10-4 0.9763 6.311
20 609.9 8.671×10-5 0.7065 3.353 2.403×10-4 0.9830 6.547
SRB inoculated soil
1 403.1 7.729×10-5 0.8359 0.2622 1.465×10-4 0.8583 2.425
3 401.5 8.382×10-5 0.7572 0.9095 1.116×10-4 0.8920 3.650
5 691.9 1.289×10-4 0.6731 1.128 3.962×10-4 0.6285 3.764
10 693.8 1.635×10-4 0.6318 1.625 3.752×10-4 0.7712 3.376
15 709.9 1.796×10-4 0.6108 2.284 3.526×10-4 0.9264 3.445
20 717.8 1.743×10-4 0.5998 2.635 3.425×10-4 0.9493 3.461
Table 1  Fitting results of EIS in sterile and SRB-inoculated red soil
Fig.8  Polarization resistance (a) and reciprocal of polarization resistance Rp-1 (b) of Q235 steel in red soil as a function of time
Fig.9  Cyclic voltammetries of a glassy carbon electrode after 10 d embedding in sterile and SRB-inoculated red soil (the scan rate: 5 mVs-1, the electrode area: 0.071 cm2)
Fig.10  Polarization plots of Q235 steel after 10 d embedding in the red soil
[1] Usher K M, Kaksonen A H, Cole I, et al.Critical review: Microbially influenced corrosion of buried carbon steel pipes[J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
[2] Wolfram J H, Rogers R D, Gazso L G.Microbial degradation processes in radioactive waste repository and in nuclear fuel storage areas [A]. Proceedings of the NATO Advanced Research Workshop[C]. Budapest, Hungary, 1997: 37
[3] Von Wolzogen Kuehr C A H, Der Van Vlugt L S. Graphitization of cast iron as an electrobiochemical process in anaerobic soils [R]. Frederick Maryland: United States Army Biological Laboratories, 1964: 18
[4] Iversen A.Microbially influenced corrosion on stainless steel in waste water treatment plants: Part 2[J]. Br. Corros. J., 2013, 36: 284
[5] Dinh H T, Kuever J, Mu?mann M, et al.Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
[6] Lovley D R, Phillips E J P. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments[J]. Appl. Environ. Microbiol., 1987, 53: 2636
[7] Luu Y S, Ramsay J A.Review: Microbial mechanisms of accessing insoluble Fe(III) as an energy source[J]. World J. Microbiol. Biotechnol., 2003, 19: 215
[8] Yan M C, Sun C, Xu J, et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
[9] Yan M C, Sun C, Dong J H, et al.Electrochemical investigation on steel corrosion in iron-rich clay[J]. Corros. Sci., 2015, 97: 62
[10] Yan M C, Sun C, Xu J, et al.Anoxic corrosion behavior of pipeline steel in acidic soils[J]. Ind. Eng. Chem. Res., 2014, 53: 17615
[11] Cao C N.Material Natural Environment Corrosion in China [M]. Beijing: Chemical Industry Press, 2005(曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005)
[12] Wu T Q, Ding W C, Zeng D C, et al.Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) Electrochemical analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346(吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I)电化学分析[J]. 中国腐蚀与防护学报, 2014, 34: 346)
[13] Webster B J, Newman R C.Producing rapid sulfate-reducing bacteria (SRB)-Influenced corrosion in the laboratory [R]. West Conshohocken, PA: ASTM International, 1994
[14] Yu L, Duan J Z, Zhao W, et al.Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochim. Acta, 2011, 56: 9041
[15] Duan J Z, Wu S R, Zhang X J, et al.Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim. Acta, 2008, 54: 22
[16] Rosborg B, Kosec T, Kranjc A, et al.Electrochemical impedance spectroscopy of pure copper exposed in bentonite under oxic conditions[J]. Electrochim. Acta, 2011, 56: 7862
[17] Feliu V, González J A, Andrade C, et al.Equivalent circuit for modelling the steel-concrete interface. I. Experimental evidence and theoretical predictions[J]. Corros. Sci., 1998, 40: 975
[18] Barbalat M, Lanarde L, Caron D, et al.Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection[J]. Corros. Sci., 2012, 55: 246
[19] Lair V, Antony H, Legrand L, et al.Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron[J]. Corros. Sci., 2006, 48: 2050
[20] Erable B, Du?eanu N M, Ghangrekar M M, et al.Application of electro-active biofilms[J]. Biofouling, 2010, 26: 57
[21] Rabaey K, Rodríguez J, Blackall L L, et al.Microbial ecology meets electrochemistry: Electricity-driven and driving communities[J]. ISME J., 2007, 1: 9
[22] Lovley D R. Dissimilatory Fe (III) and Mn(IV) reduction[J]. Microbiol. Rev., 1991, 55: 259
[23] Tugel J B, Hines M E, Jones G E.Microbial iron reduction by enrichment cultures isolated from estuarine sediments[J]. Appl. Environ. Microbiol., 1986, 52: 1167
[24] Lovley D R, Goodwin S.Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments[J]. Geochim. Cosmochim. Acta, 1988, 52: 2993
[25] Liu D, Dong H, Bishop M E, et al.Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium[J]. Geobiology, 2012, 10: 150
[26] Reguera G, McCarthy K D, Mehta T,et al.Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435: 1098
[27] Li Y L, Vali H, Sears S K, et al.Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium[J]. Geochim. Cosmochim. Acta, 2004, 68: 3251
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[5] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[9] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[10] ZHU Yichen,LIU Guangming,LIU Xin,PEI Feng,TIAN Xu,SHI Chao. Investigation on Interrelation of Field Corrosion Test and Accelerated Corrosion Test of Grounding Materials in Red Soil Environment[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[11] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[12] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[13] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[14] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[15] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
No Suggested Reading articles found!