Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (2): 171-177    DOI: 10.11902/1005.4537.2013.084
Original Article Current Issue | Archive | Adv Search |
Corrosion Resistance of Zr-1Nb-xGe Alloys in Superheated Steam at 400 ℃
ZHANG Jinlong1, 2, TU Liming1, 2, XIE Xingfei1, 2, YAO Meiyi1, 2, ZHOU Bangxin1, 2
1. Laboratory for Microstructures, Shanghai University, Shanghai 200444, China;
2. Institute of Materials, Shanghai University, Shanghai 200072, China
Download:  HTML  PDF(2620KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion resistance of Zr-1Nb-xGe(x=0, 0.05, 0.1, 0.2, mass fraction, %) alloys was investigated in superheated steam at 400 ℃, 10.3 MPa by autoclave tests. The microstructures of the alloys and oxide scales on the corroded specimens were observed by SEM and TEM. The results show that the corrosion resistance of the Zr-1Nb alloy in superheated steam at 400 ℃, 10.3 MPa may be enhanced by Ge addition. The alloy with 0.05% Ge shows the best corrosion resistance. In Zr-1Nb-xGe alloys, there are four types of second phase particles (SPPs), including β-Nb, Zr(Nb,Fe,Cr)2, Zr(Nb,Fe,Cr,Ge)2 and coarse Zr3Ge SPPs, and the maximum solid solubility of Ge in the α-Zr matrix of Zr-1Nb alloy is 0.05%~0.1%. It is noted that the Ge solid soluted in the α-Zr matrix can effectively slow down the microstructural evolution of oxide scale, thereby enhancing the corrosion resistance of the alloy. When the Ge content exceeds its solid solubility, Ge was precipitated as Zr(Nb,Fe,Cr,Ge)2 and Zr3Ge SPPs. The coarse Zr3Ge SPPs will decrease the corrosion resistance of the alloys.
Key words:  Zr-1Nb alloy      Ge      corrosion resistance      microstructure     
Received:  21 May 2013     
ZTFLH:  TG174.3  

Cite this article: 

ZHANG Jinlong, TU Liming, XIE Xingfei, YAO Meiyi, ZHOU Bangxin. Corrosion Resistance of Zr-1Nb-xGe Alloys in Superheated Steam at 400 ℃. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 171-177.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.084     OR     https://www.jcscp.org/EN/Y2014/V34/I2/171

[1] Liu J Z. Structure Nuclear Materials [M]. Beijing: Chemical Industry Press, 2007
(刘建章. 核结构材料 [M]. 北京: 化学工业出版社, 2007)
[2] Zhao W J, Zhou B X, Miao Z, et al. The development of high-performance zirconium alloy in China [J]. Atom. Energ. Sci. Technol., 2005, 39(suppl.): 1-9
(赵文金, 周邦新, 苗志等. 我国高性能锆合金的发展 [J]. 原子能科学技术, 2005, 39(增刊): 1-9)
[3] Sabol G P. An alloy development success [A]. Zirconium in the Nuclear Industry: Fourteenth International Symposium. ASTM STP 1467 [C]. Stockholm: ASTM International, 2004: 3-24
[4] Nikulina A V, Markelov V A, Peregud M M. Zirconium alloy E635 as a material for fuel rod cladding and other components of VVER and RBMK cores [A]. Zirconium in the Nuclear Industry: Eleventh International Symposium. ASTM STP 1295 [C]. Garmisch-Partenkirchen: ASTM International, 1996: 785-804
[5] Zhou B X, Zhao W J, Mao Z, et al. New Zirconium Alloy Research [M]. Beijing: Chemical Industry Press, 1997
(周邦新, 赵文金, 苗志等. 新锆合金的研究 [M]. 北京: 化学工业出版社, 1997)
[6] Zhao W J. The research of high-performance zirconium alloy in nuclear industry [J]. Rare Met. Lett., 2004, 23(5): 15-20
(赵文金. 核工业用高性能锆合金的研究 [J]. 稀有金属快报, 2004, 23(5): 15-20)
[7] Park J Y, Choi B K, Yoo S J, et al. Corrosion behavior and oxide properties of Zr-1.1 wt% Nb-0.05 wt% Cu alloy [J]. J. Nucl. Mater., 2006, 359: 59-68
[8] Yao M Y, Zou L H, Xie X F, et al. Effect of Bi addition on the corrosion resistance of Zr-4 in superheated steam at 400 ℃/10.3 MPa [J]. Acta Metall. Sin., 2012, 48: 1097-1102
(姚美意, 邹玲红, 谢兴飞等. 添加Bi对Zr-4合金在400 ℃/10.3 MPa过热蒸汽中耐腐蚀性能的影响 [J]. 金属学报, 2012, 48: 1097-1102)
[9] Zhu L, Yao M Y, Sun G C, et al. Effect of Bi addition on the corrosion resistance of Zr-1Nb alloy in deionized water at 360 ℃ and 18.6 MPa [J]. Acta Metall. Sin., 2013, 49: 51-57
(朱莉, 姚美意, 孙国成等. 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响 [J]. 金属学报, 2013, 49: 51-57)
[10] Xie X F, Zhang J L, Zhu L, et al. Study on the corrosion resistance of Zr-0.7Sn-0.35Nb-0.3Fe-xGe alloy in lithiated water at high temperature under high pressure [J]. Acta Metall. Sin., 2012, 48(12): 1487-1494
(谢兴飞, 张金龙, 朱莉等. Zr-0.7Sn-0.35Nb-0.3Fe-xGe 合金在高温高压LiOH水溶液中耐腐蚀性能的研究 [J]. 金属学报, 2012, 48(12): 1487-1494)
[11] Li S L, Yao M Y, Zhang X, et al. Effect of Cu addition on the corrosion resistance of M5 alloy in superheated steam at 500 ℃ [J]. Acta Metall. Sin., 2011, 47:163-168
(李士炉, 姚美意, 张欣等. 添加Cu对M5合金在500 ℃过热蒸汽中耐腐蚀性能的影响 [J]. 金属学报, 2011, 47: 163-168)
[12] Charquet D, Hahn R, Ortlib E, et al. Solubility limits and for mation of intermetallic precipitates in ZrSnFeCr alloys [A]. Zircorium in the Nuclear Industry: 8th International Symposium. ASTM STP 1023 [C]. Philadelphia: ASTM International, 1989: 405-422
[13] Anada H, Herb B J, Nomoto K, et al. Effect of annealing temperature on corrosion behavior and ZrO2 microstructure of zircaloy-4 cladding tube [A]. Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295 [C]. Garmisch-Partenkirchen Germany: ASTM International, 1996: 74-93
[14] Yao M Y, Zhou B X, Li Q, et al. A superior corrosion behavior of Zircaloy-4 in lithiated water at 360 ℃/18.6 MPa by β-quenching [J]. J. Nucl. Mater., 2008, 374: 197-203
[15] Jeong Y H, Kim H G, Kim T H. Effect of β phase, precipitates and Nb-concentaration in matrix on corrosion and oxide characterstics of Zr-xNb alloys [J]. J. Nucl. Mater., 2003, 317: 1-12
[16] Rudling P, Wikmark G. A unified model of Zircaloy BWR corrosion and hydriding mechanisms [J]. J. Nucl. Mater., 1999, 265: 44-59
[17] Comstock R J, Schoenberger G, Sable G P. Influence of processing variables and alloy chemistry on the corrosion behavior of ZIRLO nuclear fuel cladding [A]. Zirconium in the Nuclear Industry: Eleventh International Symposium. ASTM STP 1295 [C]. Garmisch-Partenkirchen Germany: 1996: 710-725
[18] Zhou B X, Li Q, Yao M Y, et al. Effect of water chemistry and composition on microstructural evolution of oxide on Zr alloys [A]. Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505 [C]. Sunriver Oregon: ASTM International, 2008: 360-380
[19] Zhou B X, Li Q, Yao M Y, et al. Study on the microstructure of Zr-4 alloy oxide film [J]. Corros. Prot., 2009, 30: 589-594
(周邦新, 李强, 姚美意等. Zr-4合金氧化膜的显微组织研究 [J]. 腐蚀与防护, 2009, 30: 589-594)
[20] Zhou B X, Li Q, Liu W Q, et al. The effects of water chemistry and composition on the microstructure evolution of oxide films on zirconium alloys during autoclave tests [J]. Rare Met., 2006, 35: 1009-1016
(周邦新, 李强, 刘文庆等. 水化学及合金成分对锆合金腐蚀时氧化膜显微组织演化的影响 [J]. 稀有金属材料与工程, 2006, 35: 1009-1016)
[21] Wang J K. Modern Ge Metallurgy [M]. Beijing: Metallurgy Industry Press, 2005
(王吉坤. 现代锗冶金 [M]. 北京: 冶金工业出版社, 2005)
[22] Li T F. Metal High Temperature Oxidation and Thermal Corrosion [M]. Beijing: Chemical Industry Press, 2003
(李铁藩. 金属高温氧化和热处理 [M]. 北京: 化学工业出版社, 2003)
[23] Weidinger H G, Ruhmann H, Cheliotis G, et al. Corrosion-electrochemical properties of zirconium intermetallics [A]. Zirconium in the Nuclear Industry: 9th International Symposium, ASTM STP 1132 [C]. Kobe Japan: ASTM International, 1991: 499-535
[24] Toffolon-Masclet C, Brachet J C, Jago G. Studies of second phase particles in different zirconium alloys using extractive carbon replica and an electrolytic anodic dissolution procedure [J]. J. Nucl. Mater., 2002, 305: 224-231
[25] Cao X X, Yao M Y, Peng J C, et al. Corrosion behaviour of Zr(Fex,Cr1-x)2 alloys in 400 ℃ superheated steam [J]. Acta Metall. Sin., 2011, 47: 882-886
(曹潇潇, 姚美意, 彭剑超等. Zr(Fex, Cr1-x)2合金在 400 ℃过热蒸汽中的腐蚀行为 [J]. 金属学报, 2011, 47: 882-886)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[4] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[5] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[6] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[7] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[8] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[9] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[10] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[11] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[12] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[13] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[14] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[15] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
No Suggested Reading articles found!