Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (5): 431-438    DOI: 10.11902/1005.4537.2019.138
Current Issue | Archive | Adv Search |
Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy
XIAO Jintao1,CHEN Yan1,XING Mingxiu1,JU Pengfei1(),MENG Yingen1,WANG Fang2
1. Shanghai Aerospace Equipments Manufacturer, Shanghai 200245, China
2. Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
Download:  HTML  PDF(6551KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of sulfuric acid concentration, applied voltage and oxidation time on the corrosion resistance of anodizing film of 2195 Al-Li alloy was studied. The surface morphology, thickness and corrosion resistance of the oxide film were characterized by scanning electron microscopy (SEM) and electrochemical workstation. The results show that as the concentration of sulfuric acid increases, the formation rate of the oxide film increases first and then decreases. With the increasing of applied voltage, the oxide film thickness increases in turn, but when the voltage is too high, the phenomenon of "ashing" will occur. As the oxidation time increases, the thickness of the oxide film increases sequentially. When the oxidation time reaches 30 min, the film formation rate increases. The anodizing film presents the best corrosion resistance, when anodizing process was performed with the following parameters: the sulfuric acid concentration is 180~200 g/L, the temperature is 14 ℃, the applied voltage is 14 V and the oxidation time is 50 min.

Key words:  anodic oxidation      2195 Al-Li alloy      oxide film      corrosion resistance     
Received:  01 September 2019     
Fund: National Natural Science Foundation of China (51771122) and Shanghai Pujiang Program(19PJ1431500)
Corresponding Authors:  Pengfei JU     E-mail:  jupengfei10@163.com

Cite this article: 

XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 431-438.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.138     OR     https://www.jcscp.org/EN/Y2019/V39/I5/431

Fig.1  Surface morphologies of oxide films formed on 2195 Al-Li alloy after anodization in sulfuric acid solutions of 180~200 g/L (a), 230~250 g/L (b) and 270~290 g/L (c)
Fig.2  Thicknesses of oxide films formed on 2195 aluminum-lithium alloy after anodization in sulfuric acid soluti-ons with different concentrations
Fig.3  Surface morphologies of oxide films formed on 2195 Al-Li alloy after anodization at different oxidation voltages: (a) 10 V, (b) 13 V, (c) 16 V, (d) 19 V
Fig.4  Thicknesses of oxide films formed on 2195 Al-Li alloy after anodization at different oxidation voltages
Fig.5  Surface morphologies of oxide films formed on 2195 Al-Li alloy after anodization for different time: (a) 20 min, (b) 30 min, (c) 40 min, (d) 50 min
Time / minCOAlSCrNa
2013.7245.6434.824.621.20---
3012.3645.8136.803.971.06---
407.2846.1639.573.930.920.30
509.2946.5137.884.961.060.29
Table 1  Compositions of anodized film formed on 2195 Al-Li alloy after anodization for different time (mass fraction / %)
Fig.6  Thickness of oxide film of 2195 Al-Li alloy with different oxidation time
Fig.7  Dynamic potential polarization curves of 2195 Al-Li alloy anodized for different oxidation time
Time / minEcorr / VIcorr / A·cm-2
0-0.6701.07×10-5
20-0.6631.16×10-7
30-0.5586.72×10-8
40-0.6346.17×10-8
50-0.5974.90×10-8
Table 2  Electrochemical parameters of 2195 Al-Li alloy anodized for different time
Fig.8  Nyquist diagrams of 2195 Al-Li alloy after anodizat-ion for different time
Fig.9  Bode diagrams of 2195 Al-Li alloy anodized for different time
Fig.10  Equivalent circuit diagram
Time / minRp1 / Ω·cm2Rp2 / Ω·cm2Rb / Ω·cm2
201.76×1038.46×1043.31×105
301.05×1042.66×1051.57×105
401.25×1042.48×1062.29×105
509.51×1043.71×1064.57×105
Table 3  Fitting results of electrochemical elements Rp1, Rp2 and Rb of 2195 Al-Li alloy anodized for different time
Fig.11  Resistances of oxide films formed on 2195 Al-Li alloy after anodization for different time
1 FieldingP S, WolfG J. Aluminum-lithium for aerospace [J]. Adv. Mater. Process, 1996, 150: 21
2 SunZ Q, HuangM H. Review of surface treatment for aluminum alloy [J]. Mater. Rev., 2011, 25(23): 146
2 孙振起, 黄明辉. 航空用铝合金表面处理的研究现状与展望 [J]. 材料导报, 2011, 25(23): 146
3 XiongH. Cryogenic tank and application of aluminium-lithium alloy [J]. Missil. Space Vehicl., 2001, (6): 33
3 熊焕. 低温贮箱及铝锂合金的应用 [J]. 导弹与航天运载技术, 2001, (6): 33
4 AbrahamiS T, De KokJ M M, TerrynH, et al. Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: A review [J]. Front. Chem. Sci. Eng., 2017, 11: 465
5 NakaiM, EtoT. New aspect of development of high strength aluminum alloys for aerospace applications [J]. Mater. Sci. Eng., 2000, A285: 62
6 RambabuP, PrasadN E, KutumbaraoV V, et al. Aluminium alloys for aerospace applications [A].
6 Eswara PrasadN, WanhillJ H, eds. Aerospace Materials and Material Technologies [M]. Singapore: Springer, 2017: 2
7 XuY, WangX J, YanZ T, et al. Corrosion properties of light-weight and high-strength 2195 Al-Li alloy [J]. Chin. J. Aeronaut., 2011, 24: 681
8 LiJ F, ChenW J, ZhaoX S, et al. Corrosion behavior of 2195 and 1420 Al-Li alloys in neutral 3.5%NaCl solution under tensile stress [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1171
9 ChenG H, HuY S, YuM, et al. Effect of sulfuric acid anodizing on mechanical properties of 2E12 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 579
9 陈高红, 胡远森, 于美等. 硫酸阳极化对2E12铝合金力学性能的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 579
10 CaoX X, LiJ D, ZhangJ, et al. Technical study on hard anodic oxidation of 2A12 aluminum alloy [J]. Plat. Finish., 2017, 39(9): 38
10 曹歆昕, 李吉丹, 张晶等. 2A12铝合金硬质阳极氧化工艺研究 [J]. 电镀与精饰, 2017, 39(9): 38
11 YabukiA, UrushiharaW, KinugasaJ, et al. Self-healing properties of TiO2 particle-polymer composite coatings for protection of aluminum alloys against corrosion in seawater [J]. Mater. Corros., 2011, 62: 907
12 LvD M, OuJ F, XueM S, et al. Stability and corrosion resistance of superhydrophobic surface on oxidized aluminum in NaCl aqueous solution [J]. Appl. Surf. Sci., 2015, 333: 163
13 ZengX L, WangC X, CaiX H, et al. Effect of temperature on the properties of hard anodized film of 2A12 aluminum alloy [J]. Plat. Finish., 2018, 40(9): 6
13 曾鑫龙, 王春霞, 蔡肖涵等. 温度对2A12铝合金硬质阳极氧化膜性能的影响 [J]. 电镀与精饰, 2018, 40(9): 6
14 LiJ F, ZhengZ Q, JiangN, et al. Study on localized corrosion mechanism of 2195 Al-Li alloy in 4.0%NaCl solution (pH 6.5) using a three-electrode coupling system [J]. Mater. Corros., 2005, 56: 192
15 ChenM A, ZhangX M, JiangZ J, et al. Surface features and adhesion properties of surface pretreated aluminum and its alloys [J]. Chem. Bond., 2001, (6): 262
15 陈明安, 张新明, 蒋志军等. 铝及铝合金表面处理后的表面特征和粘接特性 [J]. 化学与粘合, 2001, (6): 262
16 GoebelJ, GhidiniT, GrahamA J. Stress-corrosion cracking characterisation of the advanced aerospace Al-Li 2099-T86 alloy [J]. Mater. Sci. Eng., 2016, A673: 16
17 ZhaoX H. Study of electrochemical impedance spectroscopy on anodized aluminum alloys [D]. Beijing: Beijing University of Chemical Technology, 2005
17 赵旭辉. 铝阳极氧化膜的电化学阻抗特征研究 [D]. 北京: 北京化工大学, 2005
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[14] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[15] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
No Suggested Reading articles found!