Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (5): 411-416    DOI: 10.11902/1005.4537.2019.137
Current Issue | Archive | Adv Search |
Preparation and Thermal Shock Behavior of a Metal-enamel High-temperature Protective Coating
LI Fengjie,CHEN Minghui(),ZHANG Zheming,WANG Shuo,WANG Fuhui
Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(5059KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A metal-enamel composite high temperature protective coating was prepared by using borosilicate enamel with low softening point as bonding phase. Its thermal shock behavior was investigated via cyclically heating at 900 ℃ and quenching into room-temperature water. The higher the proportion of silica, the higher the softening point of the borosilicate enamel. When the ratio (mass fraction) of boron oxide to silica reaches 0.6, the softening point of the borosilicate enamel is higher than 750 ℃. Thermal shock test indicated that the metal-enamel composite coating containing 20% nickel particles had high thermal shock resistance, and the coating surface was intact after 30 thermal shock cycles. The enamel coating is easy to crack and peel under thermal shock condition when no metal particles are incorporated or the metal content is as high as 40%.

Key words:  enamel coating      superalloy      thermal shock     
Received:  29 August 2019     
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(51871053)
Corresponding Authors:  Minghui CHEN     E-mail:  mhchen@mail.neu.edu.cn

Cite this article: 

LI Fengjie,CHEN Minghui,ZHANG Zheming,WANG Shuo,WANG Fuhui. Preparation and Thermal Shock Behavior of a Metal-enamel High-temperature Protective Coating. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 411-416.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.137     OR     https://www.jcscp.org/EN/Y2019/V39/I5/411

Enamel powderB2O3SiO2Al2O3Na2OZrO2B2O3/SiO2
BS0.630.7551.2551210.6
BS0.845.5636.4451210.8
BS1.041.0041.0051211.0
BS1.244.7337.2751211.2
Table 1  Nominal compositions of four enamel powders (mass fraction / %)
ContentCCrAlCoWBTiMoNbHfZrNi
Mass fraction/%0.0715.53.110.85.20.074.81.90.20.200.05Bal.
Atomic fraction/%0.3017.16.610.51.60.405.71.10.10.060.03Bal.
Table 2  Chemical composition of K444 superalloy
CoatingBS0.6Al2O3Ni
N060400
N20483220
N40362440
Table 3  Compositions of three coatings (mass fraction / %)
Fig.1  Infrared absorbance spectra of four enamel powders
Fig.2  Softening behaviors of four enamel samples at 600 ℃ (a), 650 ℃ (b), 700 ℃ (c) and 750 ℃ (d)
Fig.3  Macroscopic morphologies of N0 coating (a), N20 coating (b) and N40 coating (c)
Fig.4  Surface SE-mode images of the composite coatings on K444 superalloy: (a) N0, (b) N20, (c) N40
Fig.5  Cross-sectional BSE-mode images of the composite coatings on K444 superalloy: (a) N0, (b) N20, (c) N40
Fig.6  Mass gains of the composite coatings on K444 superalloy during thermal shock test at 900 ℃
Fig.7  Macroscopic morphologies of N0 (a), N20 (b) and N40 (c) coatings after thermal shock test
Fig.8  Cross-sectional (a, c, e) and surface (b, d, f) morphologies of the N0 (a, b), N20 (c, d) and N40 (e, f) coatings after thermal shock and EDS scannings (a, c, e) along the yellow lines
1 PadtureN P, GellM, JordanE H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
2 StreiffR. Databases and expert systems for high temperature corrosion and coatings [J]. Corros. Sci., 1993, 35: 1177
3 PomeroyM J. Coatings for gas turbine materials and long term stability issues [J]. Mater. Design, 2005, 26: 223
4 Rhys-JonesT N. Coatings for blade and vane applications in gas turbines [J]. Corros. Sci., 1989, 29: 623
5 MollardM, RannouB, BouchaudB, et al. Comparative degradation of nickel aluminized by slurry and by pack cementation under isothermal conditions [J]. Corros. Sci., 2013, 66: 118
6 DonaldI W. Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings [J]. J. Mater. Sci., 1993, 28: 2841
7 DonaldI W, MetcalfeB L, GerrardL A. Interfacial reactions in glass-ceramic-to-metal seals [J]. J. Am. Ceram. Soc., 2008, 91: 715
8 ZhengD Y, ZhuS L, WangF H. Oxidation and hot corrosion behavior of a novel enamel-Al2O3 composite coating on K38G superalloy [J]. Surf. Coat. Technol., 2006, 200: 5931
9 ChenM H, ShenM L, ZhuS L, et al. Preparation and thermal shock behavior at 1000 ℃ of a glass-alumina-NiCrAlY tri-composite coating on K38G superalloy [J]. Surf. Coat. Technol., 2012, 206: 2566
10 SolaA, BellucciD, CannilloV, et al. Bioactive glass coatings: A review [J]. Surf. Eng., 2011, 27: 560
11 SarkarS, DattaS, DasS, et al. Oxidation protection of gamma-titanium aluminide using glass-ceramic coatings [J]. Surf. Coat. Technol., 2009, 203: 1797
12 DasS, DattaS, BasuD, et al. Thermal cyclic behavior of glass-ceramic bonded thermal barrier coating on nimonic alloy substrate [J]. Ceram. Int., 2009, 35: 2123
13 ChenM H, LiW B, ShenM L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: Mechanisms [J]. Corros. Sci., 2014, 82: 316
14 LiW B, ChenM H, WuM Y, et al. Microstructure and oxidation behavior of a SiC-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy [J]. Corros. Sci., 2014, 87: 179
15 NogamiM. Glass preparation of the ZrO2-SiO2 system by the sol-gel process from metal alkoxides [J]. J. Non-Cryst. Solids, 1985, 69: 415
16 SarnoR D, TomozawaM. Toughening mechanisms for a zirconia-lithium aluminosilicate glass-ceramic [J]. J. Mater. Sci., 1995, 30: 4380
17 KrsticV V, NicholsonP S, HoaglandR G. Toughening of glasses by metallic particles [J]. J. Am. Ceram. Soc., 1981, 64: 499
18 DlouhyI, BoccacciniA R. Preparation, microstructure and mechanical properties of metal-particulate/glass-matrix composites [J]. Compos. Sci. Technol., 1996, 56: 1415
19 EfimovA M. Quantitative IR spectroscopy: Applications to studying glass structure and properties [J]. J. Non-Cryst. Solids, 1996, 203: 1
20 DarwishH, GomaaM M. Effect of compositional changes on the structure and properties of alkali-alumino borosilicate glasses [J]. J. Mater. Sci.Mater. Electron., 2006, 17: 35
21 HuangC, BehrmanE C. Structure and properties of calcium aluminosilicate glasses [J]. J. Non-Cryst. Solids, 1991, 128: 310.
22 HassanA K, B?rjessonL, TorellL M. The boson peak in glass formers of increasing fragility [J]. J. Non-Cryst. Solids, 1994, 172-174: 154
23 StochL, ?rodaM. Infrared spectroscopy in the investigation of oxide glasses structure [J]. J. Mol. Struct., 1999, 511/512: 77
24 WuM Y, ChenM H, ZhuS L, et al. Protection mechanism of enamel-alumina composite coatings on a Cr-rich nickel-based superalloy against high-temperature oxidation [J]. Surf. Coat. Technol., 2016, 285: 57
[1] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[3] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[4] Zhan ZHAO,Jingyang LI,Jianxin DONG,Zhihao YAO,Maicang ZHANG. Oxidation Behavior during High Temperature Homo-genization Treatment of Cast Ni-Fe Based Corrosion Resistant 925 Alloy[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[5] Jingyong SUN,Qiushi LI,Hongbo GUO,Shengkai GONG. Effect of Interdiffusion Between Ni-Al Coating and Substrate on Microstructure Stability of Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2016, 36(5): 497-504.
[6] WU Duoli, ZHANG Hongyu, WEI Hua, ZHENG Qi, JIN Tao, SUN Xiaofeng. Hot Corrosion Behavior of Four Modified Aluminide Coatings on DZ38G Alloy[J]. 中国腐蚀与防护学报, 2014, 34(6): 502-506.
[7] LU Jintao,GU Yuefeng. High-temperature Steam Oxidation Behavior of Alloys Used for Key Parts of the Power Plant Boiler[J]. 中国腐蚀与防护学报, 2014, 34(1): 19-26.
[8] GUO Yong'an, LI Bosong, LAI Wanhui, GUO Jianting, ZHOU Lanzhang. OXIDATION BEHAVIOR OF Ni-BASED SUPERALLOY K444 AT 900℃ IN AIR DURING LONG TERM[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[9] XU Yangtao, XIA Tiandong, YAN Jianqiang. EFFECT OF ALLOYING ELEMENTS TO HOT CORROSION BEHAVIOR OF NOVEL Co-Al-W SUPERALLOY[J]. 中国腐蚀与防护学报, 2010, 30(6): 457-464.
[10] ZHANG Zehai, MENG Jie. ISOTHERMAL OXIDATION BEHAVIOR OF A SINGLE CRYSTAL NICKEL-BASED SUPERALLOY[J]. 中国腐蚀与防护学报, 2010, 30(4): 337-340.
[11] LIU Yang; WANG Lei; LI Weitao; WANG Fuqiang. EFFECTS OF ELECTRIC FIELD TREATMENT ON CORROSION BEHAVIOR OF GH3044 SUPERALLOY[J]. 中国腐蚀与防护学报, 2010, 30(2): 129-134.
[12] Haitao Liu. Study on high temperature oxidation resistance of Al-Si coating on K4104 Superalloy[J]. 中国腐蚀与防护学报, 2006, 26(6): 371-375 .
[13] Yun LI; Jianting Guo; Chao YUAN; Hongcai YANG; Long FANG; Xuegui LIU. HOT CORROSION OF NICKEL-BASE CAST SUPERALLOY K35 AT 800℃[J]. 中国腐蚀与防护学报, 2005, 25(4): 250-255 .
[14] Wei Ke. CORROSION OF HIGH TEMPERATURE ALLOY GH132 TUBE IN THE ENVIRONMENT OF DISPOSING MISSILE PROPELLANT WASTEWATER BY SUPERCRITICAL WATER OXIDATION[J]. 中国腐蚀与防护学报, 2004, 24(2): 121-124 .
[15] Han Guangwei; Feng Di; Deng Bo; Chen Ruiming; Li Dingchuan. METAL DUSTING OF NI-BASE SUPERALLOYS[J]. 中国腐蚀与防护学报, 2004, 24(2): 79-82 .
No Suggested Reading articles found!