Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (5): 395-403    DOI: 10.11902/1005.4537.2019.154
Current Issue | Archive | Adv Search |
Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings
YU Chuntang1,YANG Yingfei2,BAO Zebin1(),ZHU Shenglong1
1. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Institute of Advanced Wear & Corrosion Resistant and Functional Material, Jinan University, Guangzhou 510632, China
Download:  HTML  PDF(8711KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermal barrier coatings (TBCs) are widely used in hot section of gas turbine engines, holding excellent protection properties at high temperature, with the goal of improving engine efficiency and reducing the operation cost. Generally, a typical TBC is composed of a ceramic topcoat and an oxidation-resistant bond coat, while, the oxidation performance of the bond coat directly determines the overall performance and lifetime of the whole TBC. Thus, the challenge of TBCs operating at higher temperature and harsher environments has attracted the relevant researchers to develop advanced bond coats. Pt-modified aluminide coatings, possessing excellent oxidation resistance, are capable of forming a continuously dense Al2O3 scale with low tendency of spallation during exposure at elevated temperature. In the present paper, special attention is devoted to review the development and status of Pt- modified bond coats, including MCrAlY and nickel aluminides, as well as the merits and deficiency of such coatings have been elucidated. At last, the perspectives of manufacturing an advanced bond coat and the development trend are summarized.

Key words:  thermal barrier coating      MCrAlY      Pt-modified aluminide coating      reactive element     
Received:  12 September 2019     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51301184)
Corresponding Authors:  Zebin BAO     E-mail:  zbbao@imr.ac.cn

Cite this article: 

YU Chuntang,YANG Yingfei,BAO Zebin,ZHU Shenglong. Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 395-403.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.154     OR     https://www.jcscp.org/EN/Y2019/V39/I5/395

Fig.1  Schematic drawing of preparation of the modified NiCoCrAlY bond coatings[18]
Fig.4  Cross-section morphologies of 4YSZ TBCs with Pt-free (a) and Pt-modified (b) NiCoCrAlY bond coats after 1000 cycles of thermal exposure at 1100 ℃[19]
Fig.2  Mass change curves of the three coatings during cyclic oxidation at 1000 ℃ (a) and XRD patterns after cyclic oxidation at 1000 ℃ for 500 cycles (b)[18]
Fig.3  Element distribution (by EPMA) (a) and mass change curves (b) of NiCoCrAlY/Pt-modified NiCoCrAlY
Fig.5  Ni-Pt-Al ternary phase diagram and cyclic oxidation mass gain of β-(Ni, Pt) Al and γ/γ' for 1100 ℃[20]
Fig.6  Mass gain and square of mass gain curves of the acidic/basic (Ni, Pt)Al coatings during isothermal oxidation test at 1100 °C[21]
Fig.7  Surface morphologies of acidic (a, b) and basic (c, d) (Ni, Pt)Al coatings after isothermal oxidation test at 1100 °C for 300 h[21]
Fig.8  Surface morphologies of acidic (Ni, Pt)Al coating after cyclic oxidation at 1100 °C for 300 cycles (a) in which the amplified image shows void formation at grainboundary junctures (b)[21]
Fig.9  ToF-SIMS analyses of acidic (a) and basic (b) (Ni, Pt)Al coatings after thermal exposure at 1100 ℃ for 20 h[21]
Fig.10  Mass gain (a) and square of mass gain (b) versus the oxidation time, where the inserted histogram shows the comparison result of the oxidation rate constant (Kp) for the (Ni, Pt)Al and Hf-doped (Ni, Pt)Al coating samples during isothermal oxidation at 1100 ℃[23]
Fig.11  Cross-sectional morphologies of (Ni, Pt)Al (a) and Hf-doped (Ni, Pt)Al (b) coating samples after the isothermal oxidation test at 1100 ℃ for 300 h[23]
Fig.12  Surface morphologies of (Ni, Pt)Al (a) and Hf-doped (Ni, Pt)Al (b) coating samples after the isothermal oxidation test at 1100 ℃ for 20 h[23]
1 BeeleW, MarijnissenG, Van LieshoutA. The evolution of thermal barrier coatings-status and upcoming solutions for today’s key issues [J]. Surf. Coat. Technol., 1999, 120/121: 61
2 PadtureN P, GellM, JordanE H.Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
3 GoswamiB, RayA K, SahayS K.Thermal barrier coating system for gas turbine application-a review [J]. High Temp. Mater. Process.,2004, 23: 211
4 FanX L, LiD J, LvB W, et al. Advances in the fundamentals of the manufacture ofindustrial gas turbine [J]. China Basic Sci., 2008, 20(2): 32
4 范学领, 李定骏, 吕伯文等. 国之重器, 十载砥砺—重型燃气轮机制造基础研究进展 [J]. 中国基础科学, 2018, 20(2): 32
5 ZongR F, WuF S, FengJ.Research and application of rare earth tantalate ceramics forthermal barrier coatings [J]. Aeronaut.Manuf. Technol., 2019, 62(3): 20
5 宗若菲, 吴福硕, 冯晶.稀土钽酸盐在热障涂层中的研究与应用 [J]. 航空制造技术, 2019, 62(3): 20
6 EvansA G, MummD R, HutchinsonJ W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
7 ChenW R, WuX, MarpleB R, et al.The growth and influence of thermally grown oxide in a thermal barrier coating [J]. Surf. Coat.Technol., 2006, 201: 1074
8 YaoH R, BaoZ B, ShenM L, et al.A magnetron sputtered microcrystalline β-NiAl coating for SC superalloys. Part II. Effects of a NiCrO diffusion barrier on oxidation behavior at 1100 ℃ [J]. Appl. Surf. Sci., 2017, 407: 485
9 WarnesB M. Improved aluminide/MCrAlX coating systems for super alloys using CVD low activity aluminizing [J]. Surf. Coat. Technol., 2003, 163/164: 106
10 HouS J, ZhuS L, ZhangT, et al. A magnetron sputtered microcrystalline β-NiAl coating for SC superalloys. Part I. Characterization and comparison of isothermal oxidation behavior at 1100 ℃ with a NiCrAlY coating [J]. Appl. Surf. Sci., 2015, 324: 1
11 WangM Y, WangH, ZhangK, et al. Research progress on high temperature resistance of MCrAlYX alloy coating [J]. Therm. Spray Technol., 2015, 7(2): 12
11 王梦雨, 王辉, 张康等. 耐高温MCrAlYX合金涂层研究进展 [J]. 热喷涂技术, 2015, 7(2): 12
12 RabieiA, EvansAG.Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings [J]. Acta Mater., 2000, 48: 3963
13 DongH, YangG J, LiC X, et al. Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs [J]. J. Am. Ceram. Soc., 2014, 97: 1226
14 YuH T, SongX W, MuR D, et al. Research of YSZ thermal barrier coatings produced by EB-PVD [J]. Chin. Rare Earth, 2011, 32(3): 40
14 于海涛, 宋希文, 牟仁德等. 电子束物理气相沉积YSZ热障涂层研究 [J]. 稀土, 2011, 32(3): 40
15 GotoT. Thermal barrier coatings deposited by laser CVD [J]. Surf. Coat. Technol., 2005, 198: 367
16 WangS L. Preparation and anti-ablation properties of SiC and ZrCcoatings though chemical vapor deposition [D]. Xi'an: Northwestern Polytechnical University, 2015
16 王少龙. 化学气相沉积SiC和ZrC涂层的制备及抗烧蚀性能 [D]. 西安: 西北工业大学, 2015
17 HeM T, MengH M, WangY C, et al. Research and development of advanced thermal barrier coating materials and preparation technology [J]. Powder Metall. Technol., 2019, 37: 62
17 何明涛, 孟惠民, 王宇超等. 新型热障涂层材料及其制备技术的研究与发展 [J].粉末冶金技术, 2019, 37: 62
18 YangY F, YaoH R, BaoZ B, et al.Modification of NiCoCrAlY with Pt: Part I. Effect of Pt depositing location and cyclic oxidation performance [J]. J. Mater. Sci. Technol., 2019, 35: 341
19 YuC T, LiuH, JiangC Y, et al.Modification of NiCoCrAlY with Pt: Part II. Application in TBC with pure metastable tetragonal (t′) phase YSZ and thermal cycling behavior [J]. J. Mater. Sci. Technol., 2019, 35: 350
20 DasD K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
21 YuC T, LiuH, UllahA, et al.High-temperature performance of (Ni, Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100 ℃: Effect of excess S impurities [J]. Corros. Sci., 2019, 159: 108115
22 ZhangY, LeeW Y, HaynesJ A, et al. Synthesis and cyclic oxidation behavior of a (Ni, Pt)Al coating on a desulfurized Ni-base superalloy [J]. Metall. Mater. Trans., 1999, 30A: 2679
23 YangY F, JiangC Y, YaoH R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
24 YangY F, JiangC Y, YaoH R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
[1] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[2] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[3] Xinhui LI,Wen MA,Yichuan YIN,Bole MA,Yu BAI,Ruiling JIA,Hongying DONG. Optimization of Preparation Process of Solution Precursor Plasma Spraying for SrZrO3 Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[4] Lili CAI,Wen MA,Xinhui LI,Yichuan YIN,Bole MA,Yu BAI,Jun WANG,Hongying DONG. Corrosion Resistance of (Gd0.7Sr0.3)ZrO3.35 Coating against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[5] Shanrong ZHANG,Hongying DONG,Wen MA,Yichuan YIN,Xinhui LI,Yu BAI,Ruiling JIA. Corrosion Resistance of Air Plasma Sprayed Thermal Barrier Coating SrZrO3 on Superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[6] Jiapeng HUANG,Bin YANG,Hang WANG. Effect of Multiple Addition of Y, La and Ce on Oxidation Behavior of Ni-10Cr-5Al Alloy at 1000 ℃ in Air[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[7] CHEN Chen,GUO Hongbo,GONG Shengkai. Failure Analysis of Thermal Barrier Coating Being Subjected to Lateral Thermal Gradient on Surface[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[8] ;. RECENT DEVELOPMENT OF PERFORMANCE VALUATION ON THERMAL BARRIER COATINGS[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[9] LI yunduan; Shengkai Gong; Huibing Xv. FAILURE MECHANISM OF ONE SIDE COATED THERMAL BARRIER COATING[J]. 中国腐蚀与防护学报, 2006, 26(3): 146-151 .
[10] Changguang Deng; Ziqi Kuang. THE EFFECT OF LANTHANUM BEARING FERROSILICON TOTHE MICROSTRUCTURE AND PERFORMANCES OF TBCs GRADED COATING[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[11] Hexing Chen; Zhanpeng Jin; Kesong Zhou. STUDY OF CHARACTERISTICS OF NiCrAlY-ZrO2 INTERFACEIN THERMAL BARRIER COATINGS[J]. 中国腐蚀与防护学报, 2002, 22(2): 95-97 .
[12] Xiaofang Bi; Hongbo Guo; Shengkai Gong; Huibing Xv. INVESTIGATION OF HIGH TEMPERATURE HOT CORROSIONBEHAVIOR OF THERMAL BARRIER COATINGS PREPARED BY EB-PVD[J]. 中国腐蚀与防护学报, 2002, 22(2): 84-87 .
[13] Zhongyuan Zhang; Meiheng Li; Xiaofeng Sun. CYCLIC OXIDATION BEHAVIOR OF THERMAL BARRIERCOATINGS ON SINGLE CRYSTAL SUPERALLOYS[J]. 中国腐蚀与防护学报, 2002, 22(2): 111-114 .
No Suggested Reading articles found!