Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (4): 319-330    DOI: 10.11902/1005.4537.2018.127
Current Issue | Archive | Adv Search |
Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres
GUO Tieming1(),ZHANG Yanwen1,QIN Junshan2,SONG Zhitao1,DONG Jianjun2
1. YANG Xinlong2, NAN Xueli1
2. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
Download:  HTML  PDF(22819KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of Q345q bridge steel was studied by dry-wet alternating accelerated corrosion test method with three designed media, which aim to simulate three environmental conditions commonly encountered in the Northwest China, namely deicing-, industrial- and industrial with deicing-conditions respectively. While the corrosion kinetics curves of Q345q bridge steel were measured by weight loss method. The morphology, microstructure and phase composition, as well as the electrochemical properties of the rust scales of Q345q bridge steel corroded for different time were assessed by means of SEM, XRD and electrochemical workstation. Results show that although the corrosion rate is small in the deicing salt medium within 480 h, the corrosion product contains unstable and soluble compounds such as β-FeOOH and chloride, which results in loose rust scale, the corrosion current of the rust scale increases with time, thus which is poor in protectiveness. The corrosion rate in the sodium bisulfite medium is higher, but with the increase of corrosion time, the corrosion rate decreases rapidly, the anode corrosion current of the rust scale decreases, therewith, the rust scale is protective. In the mixed medium, the corrosion behavior is a coupling effect. Due to the existence of corrosion products such as chlorides, the compactness of the rust scale is poor, but which exhibits protectiveness to a certain degree in comparison with that in the deicing salt medium.

Key words:  bridge steel Q345q      deicing salt      NaHSO3 medium      mixed medium      corrosion behavior     
Received:  05 September 2018     
ZTFLH:  TG172.3  
Fund: Supported by National Natural Science Foundation of China(51461029);Guangdong Sailing Program to Introduce Innovative Entrepreneurial Team of Special Funding(2015YT02G090);Scientific Research Projects of Gansu Transportation Department(2017-16 and 2017-19)
Corresponding Authors:  Tieming GUO     E-mail:  guotm@lut.cn

Cite this article: 

GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 319-330.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.127     OR     https://www.jcscp.org/EN/Y2019/V39/I4/319

Corrosive mediumCompositionpHStandard
Deicing saltNa2SO4 (0.500±0.002) g9.3±0.5GB/T 19746-2005
Na2SO3 (0.250±0.002) g
Na2S2O3 (0.100±0.002) g
NaCl (52.5±1) g
CaCl2·2H2O (52.5±1) g
NaHSO30.01 mol/L NaHSO34.4TB/T2375-1993
Mixed solutionDeicing salt+0.01 mol/L NaHSO34.8
Table 1  Constituents of three corrosive solutions simulating atmospheric environments
Fig.1  Mass loss (a) and corrosion rates (b) curves of Q345q steel in three different corrosion solutions
Corrosive mediumFirst stepSecond step
AnR2AnR2
Deicing salt0.01291.04260.98710.04640.79900.9984
NaHSO30.08691.89390.98350.21770.82910.9782
Mixed solution0.00381.50390.98920.53310.48640.9999
Table 2  Fitting values of A and n in equation (3)
Fig.2  XRD spectra of corrosion products formed on Q345q steel after wet-dry cyclic corrosion in deicing salt (a), NaHSO3 (b), and mixed solution (c) for different time, and the comparison for the samples corroded for 480 h in three solutions (d)
Fig.3  Macrographs of the rust scale formed on Q345q steel corroded for 24 h (a, f, k), 72 h (b, g, l), 144 h (c, h, m), 288 h (d, i, n) and 480 h (e, j, o) in deicing salt (a~e), NaHSO3 (f~j) and mixed solution (k~o)
Fig.4  Micromorphologies of Q345q steel after corrosion in deicing salt for 72 h (a), 144 h (b) and 288 h (c)
Fig.5  Micromorphologies of Q345q steel after corrosion in NaHSO3 solution for 72 h (a), 144 h (b) and 288 h (c)
Fig.6  Micromorphologies of Q345q steel after corrosion in mixed solution for 72 h (a), 144 h (b) and 288 h (c)
Fig.7  Cross-sectional morphologies of Q345q steel corroded for 72 h (a, d, g),144 h (b, e, h) and 288 h (c, f ,i) in deicing salt (a~c), NaHSO3 solution (d~f) and mixed solution (g~i)
MediumTime / hRust layer thickness / μm
Deicing salt7210.2273
14421.1364
28844.6818
NaHSO37229.0909
14437.9545
28857.2273
Deicing salt+ NaHSO37212.0000
14425.7273
28842.9091
Table 3  Average thicknesses of the rust scale of Q345q steel corroded for different time in three media
Fig.8  Polarization curves of Q345q steel corroded for different time in deicing salt (a), NaHSO3 (b) and mixed solut-ions (c), and the comparison for three samples corroded for 480 h (d)
Time / hCorrosion solutionEcorr / VIcorr / mA·cm-2
24Deicing salt-0.89660.0364
NaHSO3-0.84210.4018
Mixed solution-0.87010.2293
72Deicing salt-0.83130.1557
NaHSO3-0.82790.3734
Mixed solution-0.84210.2565
144Deicing salt-0.77930.2245
NaHSO3-0.64130.2487
Mixed solution-0.77680.2287
288Deicing salt-0.72790.2403
NaHSO3-0.66930.1972
Mixed solution0.68790.1986
480Deicing salt-0.67970.2474
NaHSO3-0.53520.0520
Mixed solution-0.61780.1729
Table 4  Electrochemical parameters of polarization curves of Q345q steel samples with rust scale
[1] GuoA M, ZouD H. The status of bridge steel in China and the development of weathering bridge steel [A]. Proceedings of the National Conference on Rolling Production Technology [C]. Dalian, 2008
[1] (郭爱民, 邹德辉. 我国桥梁用钢的现状及耐候桥梁钢的发展 [A]. 2008年全国轧钢生产技术会议论文集 [C]. 大连, 2008)
[2] WangL, GaoC R, WangY F, et al. Development of bridge steels in China [J]. Mater. Mech. Eng., 2008, 32(5): 1
[2] (王磊, 高彩茹, 王彦锋等. 我国桥梁钢的发展历程及展望 [J]. 机械工程材料, 2008, 32(5): 1)
[3] HaraS, KamimuraT, MiyukiH, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge [J]. Corros. Sci., 2007, 49: 1131
[4] XiaY. Corrosion behavior of carbon steel and weathering steel in several typical conditions [D]. Hangzhou: Zhejiang University, 2014
[4] (夏妍. 碳钢和耐侯钢在若干典型环境下的腐蚀行为研究 [D]. 杭州: 浙江大学, 2014)
[5] KeW, DongJ H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel [J]. Acta Metall. Sin., 2010, 46: 1362
[5] (柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究 [J]. 金属学报, 2010, 46: 1362)
[6] XiaoY D, WangG Y, LiX G. Corrosion behavior of atmospheric environment and corrosion feature of materials in our western area [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 253
[6] (萧以德, 王光雍, 李晓刚. 我国西部地区大气环境腐蚀性及材料腐蚀特征 [J]. 中国腐蚀与防护学报, 2003, 23: 253)
[7] CaoC N, WangG Y, LiX L, et al. Natural Environmental Corrosion of Chinese Materials [M]. Beijing: Chemical Industry Press, 2005: 69
[7] (曹楚南, 王光雍, 李兴濂等. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005: 69)
[8] Casta?oJ G, BoteroC A, RestrepoA H, et al. Atmospheric corrosion of carbon steel in Colombia [J]. Corros. Sci., 2010, 52: 216
[9] MaY T, LiY, WangF H. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corros. Sci., 2009, 51: 997
[10] GaoX L, FuG Q, ZhuM Y, et al. Corrosion behavior of low-alloy weathering steel in environment containing chloride ions [J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 1282
[10] (高新亮, 付贵勤, 朱苗勇等. 低合金耐候钢在含氯离子环境中的腐蚀行 [J]. 北京科技大学学报, 2012, 34: 1282)
[11] GaoX L, ZhuM Y, FuG Q, et al. Corrosion behavior of bridge weathering steel in environment containing Cl- [J]. Acta Metall. Sin., 2011, 47: 520
[11] (高新亮, 朱苗勇, 付贵勤等. 桥梁耐候钢在含Cl-离子环境中的腐蚀行为 [J]. 金属学报, 2011, 47: 520)
[12] ChenW J, HaoL, DongJ H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014, 50: 802
[12] (陈文娟, 郝龙, 董俊华等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014, 50: 802)
[13] GuoM X, PanC, WangZ Y, et al. A study on the initial corrosion behavior of carbon steel exposed to a simulated coastal-industrial Atmosphere [J]. Acta Metall. Sin., 2018, 54: 65
[13] (郭明晓, 潘晨, 王振尧等. 碳钢在模拟海洋工业大气环境中初期腐蚀行为研究 [J]. 金属学报, 2018, 54: 65)
[14] ZhangX, YangS W, ZhangW H, et al. Influence of outer rust layers on corrosion of carbon steel and weathering steel during wet-dry cycles [J]. Corros. Sci., 2014, 82: 165
[15] WangJ H, WeiF I, ChangY S, et al. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres [J]. Mater. Chem. Phys., 1997, 47: 1
[16] CollinsJ B, LevinH. Diffuse interface model of diffusion-limited crystal growth [J]. Phys. Rev., 1985, 31B: 6119
[17] LyonS B, ThompsonG E, JohnsonJ B, et al. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test: Aluminum, galvanized steel, and steel [J]. Corros. Sci., 1987, 43: 719
[18] KeiserJ T, BrownC W, HeidersbachR H. Characterization of the passive film formed on weathering steels [J]. Corros. Sci, 1983, 23: 251
[19] TownsendH E, ZoccolaJ C. STP767 [M]. Philadelphia, PA: ASTM, 1982: 45
[20] MaY T, LiY, WangF H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment [J]. Corros. Sci., 2010, 52: 1796
[21] ZhangD D, WangZ X, ZhaoC Y, et al. Atmospheric corrosion behavior of Q345 steel in a simulated acidic marine aerosols environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 326
[21] (张丹丹, 王振尧, 赵春英等. Q345钢在模拟酸性海洋气溶胶环境下的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 326)
[22] WangZ Y, YuQ C, ChenJ J, et al. Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 53
[22] (王振尧, 于全成, 陈军君等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为 [J]. 中国腐蚀与防护学报, 2014, 34: 53)
[23] NishimuraT, KatayamaH, NodaK, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56: 935
[24] YuQ C, WangZ Y, WangC. Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative condition [J]. Acta Metall. Sin., 2010, 46: 1133
[24] (于全成, 王振尧, 汪川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为 [J]. 金属学报, 2010, 46: 1133)
[25] HanW, WangJ, WangZ Y, et al. Atmospheric corrosion of five low alloy steels [J]. Corros. Sci. Prot. Technol., 2003, 15: 315
[25] (韩薇, 汪俊, 王振尧等. 低合金钢耐大气腐蚀规律研究 [J]. 腐蚀科学防护与技术, 2003, 15: 315)
[26] DongJ, DongJ H, HanE-H, et al. Corrosion behavior of rusted mild steel under means of wet/dry alternate conditions [J]. Corros. Sci. Prot. Technol., 2006, 18: 415
[26] (董杰, 董俊华, 韩恩厚等. 低碳钢带锈电极的腐蚀行为 [J]. 腐蚀科学与防护技术, 2006, 18: 415)
[27] DongJ, DongJ H, HanE-H, et al. Rusting evolvement of mild steel under wet/dry cyclic condition with pH 4 NaHSO3 solution [J]. Corros. Sci. Prot. Technol., 2009, 21: 1
[27] (董杰, 董俊华, 韩恩厚等. 低碳钢在模拟酸雨大气条件下的锈蚀演化 [J]. 腐蚀科学与防护技术, 2009, 21: 1)
[28] HaraS, MiuraM, UchiumiY, et al. Suppression of deicing salt corrosion of weathering steel bridges by washing [J]. Corros. Sci., 2005, 47: 2419
[29] WangJ H, WeiF I, ChangY S, et al. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres [J]. Mater. Chem. Phys., 1997, 47: 1
[30] SinghD D N, YadavS, SahaJ K. Role of climatic conditions on corrosion characteristics of structural steels [J]. Corros. Sci., 2008, 50: 93
[31] QuQ, YanC W, ZhangL, et al. Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel [J]. Acta Metall. Sin., 2002, 38: 1062
[31] (屈庆, 严川伟, 张蕾等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应 [J]. 金属学报, 2002, 38: 1062)
[32] LiD L, FuG Q, ZhuM Y, et al. Effect of SO2 pollution on corrosion behavior of Q235B steel in hot and humid marine atmosphere [J]. Iron Steel, 2017, 52(1): 68
[32] (李东亮, 付贵勤, 朱苗勇等. 湿热海洋大气中SO2污染对Q235B钢腐蚀行为的影响 [J]. 钢铁, 2017, 52(1): 68)
[1] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[7] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[8] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[9] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[10] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[11] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[12] Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[13] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[14] Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Shuan LIU,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution II—Temperature and Dissolved Oxygen[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[15] Zihao WANG,Yunhua HUANG,Jia LI,Lang YANG,Donghan XIE. Effect of Nb on Corrosion Behavior of Simulated Weld HAZs of X80 Pipeline Steel in Simulated Seawater Environments Correxxxxsponding to Shallow Sea and Deep Sea[J]. 中国腐蚀与防护学报, 2016, 36(6): 604-610.
No Suggested Reading articles found!