Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (3): 260-266    DOI: 10.11902/1005.4537.2018.108
Current Issue | Archive | Adv Search |
Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete
Bo DA,Hongfa YU(),Haiyan MA,Zhangyu WU
Department of Civil Engineering, Nanjing University of Aeronautic and Astronautic, Nanjing 210016, China
Download:  HTML  PDF(2030KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nyquist plots and Bode impedance module plots of rebar steel in coral aggregate concrete (CAC) exposed in artificial sea water for different times were assessed by means of electrochemical impedance spectroscopy (EIS). The suitable equivalent electric circuit (EEC) for fitting data of the rebar steel corrosion in CAC was proposed. The conversion relationship between charge transfer resistance (Rct) and polarization resistance (Rp) was established. The influence of the thickness of concrete cover and the rebar steel types on the corrosion behavior of rebar steel in CAC was discussed. The results show that: the EEC mode for the rebar steel electrode in CAC were Rs(CcRc)(QdlRct) in the passivation stage and Rs(CcRc)(Qdl(RctW)) in the corrosion stage respectively. As the thickness of concrete cover increased, the Rct of rebar steel gradually increased, as did the corrosion resistance. Moreover, the corrosion resistance of different rebar steels decreases as the following sequence: 2205 duplex stainless steel >316 stainless steel >new organic coated steel >zinc-chromium coated steel >common steel. Therefore, for CAC structures in actual engineering practice, it was suggest to adopt new organic coated steel, while the thickness of concrete cover should be thicker than 5.5 cm, which could prolong the initial stage of rebar steel corrosion, reduce the corrosion rate and prolong the service life of the CAC structure.

Key words:  coral aggregate concrete      reinforcement corrosion      electrochemical impedance spectroscopy method      equivalent electric circuit      concrete cover thickness      reinforcement types     
Received:  31 July 2018     
ZTFLH:  TU528  
Fund: National Natural Science Foundation of China(51508272);National Natural Science Foundation of China(51678304);National Natural Science Foundation of China(51878350);National Natural Science Foundation of China(11832013);Natural Science Foundation of Jiangsu Province(BK20180433);China Postdoctoral Science Foundation(2018M630558)
Corresponding Authors:  Hongfa YU     E-mail:  yuhongfa@nuaa.edu.cn

Cite this article: 

Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 260-266.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.108     OR     https://www.jcscp.org/EN/Y2019/V39/I3/260

SteelCSiMnPSCrNiMoNFe
A0.200.561.420.020.04------------Bal.
E0.030.600.800.010.0717.1412.582.28---Bal.
D0.030.480.830.030.0121.604.712.680.16Bal.
Table 1  
No.Steel typeSteel quantityInhibitorSpecimen quantity
CAC-11B153%CN2
CAC-12A153%CN2
CAC-13C153%CN2
CAC-14E153%CN2
CAC-15D153%CN2
Table 2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  

Rp

kΩ·cm2

Icorr

μA·cm-2

Vcorr

mm·a-1

Rct

kΩ·cm2

Corrosion rate
2.5~0.2510~1000.1~11.86~0.186Much higher
25~2.51~100.01~0.118.6~1.86High
250~250.1~10.001~0.01186~18.6Moderate, low
>250<0.1<0.001>186Negligible
Table 3  
Fig.5  
No.EEC1EEC2EEC3Rp / Ω·cm2
Rct / Ω·cm2σ2aRct / Ω·cm2σ2aRct / Ω·cm2σ2
CAC-11297254.00×10-513747189672.00×10-524505178462.32×10-343472
CAC-12218211.30×10-44301159721.00×10-410150175122.08×10-326122
CAC-13159432.50×10-4498062971.70×10-414626101082.92×10-320923
CAC-14376332.04×10-319294255142.04×10-331413208188.80×10-456927
CAC-15471471.14×10-35772390511.76×10-213868318441.46×10-252919
Table 4  
Fig.6  
Fig.7  
[1] Yu H F, Da B, Ma H Y, et al. Durability of concrete structures in tropical atoll environment [J]. Ocean Eng., 2017, 135: 1
[2] Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete—A review [J]. Cement Concr. Res., 2009, 39: 1122
[3] Da B, Yu H F, Ma H Y, et al. Chloride diffusion study of coral concrete in a marine environment [J]. Constr. Build. Mater., 2016, 123: 47
[4] Da B, Yu H F, Ma H Y, et al. Reinforcement corrosion research based on the linear polarization resistance method for coral aggregate seawater concrete in a marine environment [J]. Anti-Corros. Methods Mater., 2018, 65: 458
[5] Gartner N, Kosec T, Legat A. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment [J]. Mater. Chem. Phys., 2016, 184: 31
[6] Da B, Yu H F, Ma H Y, et al. Influence of inhibitors on reinforced bar corrosion of coral aggregate seawater concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 152
[6] (达波, 余红发, 麻海燕等. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 152)
[7] John D G, Searson P C, Dawson J L. Use of AC impedance technique in studies on steel in concrete in immersed conditions [J]. Br. Corros. J., 1981, 16: 102
[8] Shi M L, Liu J Y, Wu K R. AC impedance method to study the mechanism of corrosion of rebar in concrete [J]. J. Build. Mater., 1998, 1(3): 206
[8] (史美伦, 刘俊彦, 吴科如. 混凝土中钢筋锈蚀机理研究的交流阻抗方法 [J]. 建筑材料学报, 1998, 1(3): 206)
[9] Shi M L. Impedance Spectroscopy of Concrete [M]. Beijing: China Railway Publishing House, 2003
[9] (史美伦. 混凝土阻抗谱 [M]. 北京: 中国铁道出版社, 2003)
[10] Xu C. Electrochemical characteristic and related testing and monitoring technology of the steel corrosion of concrete structures [D]. Hangzhou: Zhejiang University, 2012
[10] (许晨. 混凝土结构钢筋锈蚀电化学表征与相关检/监测技术 [D]. 杭州: 浙江大学, 2012)
[11] Da B, Yu H F, Ma H Y, et al. Experimental investigation of whole stress-strain curves of coral concrete [J]. Constr. Build. Mater., 2016, 122: 81
[12] Millard S G, Gowers K R, Gill J S. Reinforcement corrosion assessment using linear polarisation techniques [J]. ACI Mater. J., 1991, 128: 373
[13] Shi J J. Corrosion of steel in concrete under simultaneous loading and environment effects [D]. Nanjing: Southeast University, 2011
[13] (施锦杰. 荷载与环境耦合因素作用下混凝土中钢筋锈蚀研究 [D]. 南京: 东南大学, 2011)
[14] González J A, Molina A, Escudero M L, et al. Errors in the electrochemical evaluation of very small corrosion rates—I. Polarization resistance method applied to corrosion of steel in concrete [J]. Corros. Sci., 1985, 25: 917
[15] Keddam M, Nóvoa X R, Soler L, et al. An equivalent electrical circuit of macrocell activity in facing electrodes embedded in cement mortar [J]. Corros. Sci., 1994, 36: 1155
[16] Tang H. Research on corrosion of steel bar in magnesium phosphate cement [D]. Chongqing: Chongqing University, 2015
[16] (唐浩. 磷酸镁水泥体系中钢筋锈蚀行为研究 [D]. 重庆: 重庆大学, 2015)
[17] Macías A. Comparison of different electrochemical techniques for corrosion-rate determination of zinc-coated reinforcements in simulated concrete pore solutions [J]. Mater. Struct., 1991, 24: 456
[18] Da B, Yu H F, Ma H Y, et al. Influence of concrete strength grade to the shear behavior of coral aggregate reinforced concrete beam [J]. Sci. Sin. Technol., 2019, 49: 212
[18] (达波, 余红发, 麻海燕等. 混凝土强度等级对全珊瑚海水钢筋混凝土梁抗剪性能的影响 [J]. 中国科学: 技术科学, 2019, 49: 212)
[19] Zeng C S. Electrochemical research of 316L stainless steel corrosion [D]. Kunming: Kunming University of Science and Technology, 2006
[19] (曾初升. 316L不锈钢腐蚀性能电化学研究 [D]. 昆明: 昆明理工大学, 2006)
[20] Fan Q Q, Hua L. Factors related to 2205 duplex stainless steel corrosion [J]. Corros. Sci. Prot. Technol., 2014, 26: 178
[20] (范强强, 华丽. 2205双相不锈钢腐蚀行为的影响因素 [J]. 腐蚀科学与防护技术, 2014, 26: 178
[21] Zhao Y L, Gao M, Hu J M, et al. Electrochemical investigation of corrosion performance of electrophoretic hybrid epoxy-silane coatings on galvanized steel [J]. Corros. Sci. Prot. Technol., 2016, 28: 407
[21] (赵艳丽, 高媚, 胡吉明等. 镀锌钢表面硅烷掺杂电泳漆涂层的腐蚀电化学行为研究 [J]. 腐蚀科学与防护技术, 2016, 28: 407)
[1] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
No Suggested Reading articles found!