Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (1): 9-17    DOI: 10.11902/1005.4537.2018.147
Current Issue | Archive | Adv Search |
Microbiologically Influenced Corrosion of Pipeline Steels
Xianbo SHI1,Chunguang YANG1,Wei YAN1,Dake XU2,Maocheng YAN1,Yiyin SHAN1,Ke YANG1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(16984KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microbiologically influenced corrosion (MIC) of pipeline steels has been recognized as an important form of pipeline failures. It has been reported that more than 20% of pipeline system failures was related to microorganisms. It is therefore important to improve our understanding of MIC and take countermeasures for controlling the MIC. In this paper, the MIC of pipeline steels and the related hazards are reviewed, the MIC failure cases of pipeline steels in recent years are analyzed, and the state-of-the-art of research on the MIC of pipeline steels, as well as the relevant countermeasures are summarized. From the material aspect, the research progress of MIC-resistant pipeline steels is elaborated, and the research and development direction of MIC-resistant pipeline steels is proposed.

Key words:  pipeline steel      microbiologically influenced corrosion      Cu-bearing pipeline steel     
Received:  12 October 2018     
ZTFLH:  TG142.1  
Fund: Supported by Doctoral Scientific Research Foundation of Liaoning Province(20180540083);Shenyang Science and Technology Research Funding(18-013-0-53);Project of China Pipeline Research Organization(CPRO2018NO4)
Corresponding Authors:  Ke YANG     E-mail:  kyang@imr.ac.cn

Cite this article: 

Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 9-17.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.147     OR     https://www.jcscp.org/EN/Y2019/V39/I1/9

Fig.1  MIC morphologies of pipeline steel under disbonded coating[16]
Fig.2  SRB corrosion morphologies of buried gas transmission pipeline in bog soil[17]
SteelYSMPaUTSMPaEL%CVNJ
X80-Cu pipeline steel (as-rolled)55274124.9125
X80 pipeline steel65772923.5116
X80-Cu pipeline steel (as-aged)69274522.1120
Table 1  Yield strength (YS), ultimate tensile strength (UTS), elongation (EL) and Charpy V-notch absorbed energy (CVN) of Cu-bearing (X80-Cu) and X80 pipeline steels[59]
Fig.3  Tensile stress-strain curves and impact fractured spe-cimens (inset) of Cu-bearing (X80-Cu) and X80 pip-eline steels[59]
Fig.4  Variations of corrosion current (Icorr) with exposure time for Cu-bearing (X80-Cu) and X80 pipeline ste-els in the soil-extract solution with SRB[57]
Fig.5  Biofilm morphologies of Cu-bearing (X80-Cu) (a) and X80 (b) pipeline steels after immersion for 20 d in soil-extract solution with SRB[57]
Fig.6  Pitting morphologies of Cu-bearing (X80-Cu) (a) and X80 (b) pipeline steels after immersion for 20 d in soil-extract solution with SRB[57]
Fig.7  Morphologies of live (green dots)/dead (red dots) P. aeruginosa on the surfaces of Cu-bearing (X80-Cu) (a) and X80 (b) pipeline steels after immersion for 5 d[59]
Fig.8  Pitting morphologies of Cu-bearing (X80-Cu) (a) and X80 (b) pipeline steels after immersion for 14 d in the solution with P. aeruginosa[59]
[1] Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
[1] 黄烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
[2] Javaherdashti R. Microbiologically Influenced Corrosion: An Engineering Insight [M]. London: Springer, 2008
[3] Institute of Oceanology, Chinese Academy of Sciences. China corrosion costs in 2014 were more than 2 trillion [EB/OL]. (2016-06-05).
[3] 中国科学院海洋研究所. 我国2014年腐蚀成本超过2万亿约占GDP 3.34% [EB/OL]. (2016-06-05). )
[4] Javaherdashti R. A review of some characteristics of MIC caused by sulfate-reducing bacteria: Past, present and future [J]. Anti-Corros. Method Mater., 1999, 46: 173
[5] Jiang B, Du C W, Li X G, et al. Development of typical microbiologically influenced corrosion research [J]. Corros. Prot. Petrochem.Ind., 2008, 25(4): 1
[5] 蒋波, 杜翠薇, 李晓刚等. 典型微生物腐蚀的研究进展 [J]. 石油化工腐蚀与防护, 2008, 25(4): 1
[6] Yin Y S, Dong L H, Liu T, et al. Microbiologically Influenced Corrosion of Materials Used in Ocean [M]. Beijing: Chemical Science Press, 2012
[6] 尹衍升, 董丽华, 刘涛等. 海洋材料的微生物附着腐蚀 [M]. 北京: 科学出版社, 2012
[7] Lin J, Zhu G W, Sun C, et al. A review of Microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 279
[7] 林建, 朱国文, 孙成等. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13: 279
[8] Xia J, Xu D K, Nan L, et al. Study on mechanisms of microbiologically influenced corrision of metal from the perspective of bio-electrochemistry and bio-energetics [J]. Chin.
[8] J. Mater. Res., 2016, 30(3): 161夏进, 徐大可, 南黎等. 从生物能量学和生物电化学角度研究金属微生物腐蚀的机理 [J]. 材料研究学报, 2016, 30(3): 161)
[9] Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
[9] 刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
[10] Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeter. Biodegr., 2014, 93: 84
[11] Gu T Y. New understandings of biocorrosion mechanisms and their classifications [J]. J. Microb. Biochem. Technol., 2012, 4: 3
[12] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeter. Biodegr., 2014, 91: 74
[13] Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
[14] Huo C Y, Li Y, Ji L K. Development and applications of pipeline steel in long-distance gas pipeline of China [A]. Energy Materials2014 [C]. Cham: Springer, 2014
[15] Videla H A. Prevention and control of biocorrosion [J]. Int. Biodeter. Biodegr., 2002, 49: 259
[16] Li S Y, Kim Y G, Jeon K S, et al. Microbiologically influenced corrosion of underground pipelines under the disbonded coatings [J]. Met. Mater., 2000, 6: 281
[17] Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem [J]. Appl. Environ. Microbiol., 2014, 80: 1226
[18] Abedi S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline [J]. Eng. Fail. Anal., 2007, 14: 250
[19] Jacobson G A. Corrosion at Prudhoe Bay-A lesson on the line [J]. Mater. Perform., 2007, 8: 27
[20] Bhat S, Kumar B, Prasad S, et al. Failure of a new 8-in pipeline from group gathering station to central tank farm [J]. Mater. Perform., 2011, 50: 50
[21] Al-Jaroudi S, UI-Hamid A, Al-Gahtani M. Failure of crude oil pipeline due to microbiologically induced corrosion [J]. Corros. Eng. Sci. Technol., 2011, 46: 568
[22] Liu L. Corrosion behavior of sulfate reducing bacteria in X52 pipeline steel [D]. Chengdu: Southwest Petroleum University, 2016
[22] 刘黎. X52输油管道硫酸盐还原菌腐蚀行为研究 [D]. 成都: 西南石油大学, 2016
[23] Niu T, Yang J W, Wang L, et al. Pitting mechanism of X60 pipeline steel under the action of SRB [J]. Corros. Prot., 2014, 35: 1060
[23] 牛涛, 杨建炜, 王林等. 硫酸盐还原菌作用下X60管线钢的腐蚀穿孔机制 [J]. 腐蚀与防护, 2014, 35: 1060
[24] Xiao R J, Xiao G Q, Huang B, et al. Corrosion failure cause analysis and evaluation of corrosion inhibitors of Ma Huining oil pipeline [J]. Eng. Fail. Anal., 2016, 68: 113
[25] Jack T, Wilmott M, Sutherby R, et al. External corrosion of line pipe: A summary of research activities [J]. Mater. Perform., 1996, 35: 18
[26] Pikas J. Case histories of external microbiologically influenced corrosion underneath disbonded coatings [A]. Corrosion/96 [C].Houston, TX: NACE International, 1996
[27] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corros. Sci., 2011, 53: 955
[28] Chen X, Wang G F, Gao F J, et al. Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings [J]. Corros. Sci., 2015, 101: 1
[29] Alabbas F M, Williamson C, Bhola S M, et al. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80) [J]. Int. Biodeter. Biodegr., 2013, 78: 34
[30] Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
[31] Wu T Q, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment [J]. Corros. Sci., 2014, 88: 291
[32] Sun C, Xu J, Wang F H. Interaction of sulfate-reducing bacteria and carbon steel Q235 in biofilm [J]. Ind. Eng. Chem. Res., 2011, 50: 12797
[33] Wu T Q, Yan M C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in a near-neutral pH soil solution [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 93
[34] Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) electrochemical analysis [J].J.Chin. Soc. Corros. Prot., 2014, 34: 346
[34] 吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346
[35] Kuang F, Wang J, Yan L, et al. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel [J]. Electrochim. Acta, 2007, 52: 6084
[36] Little B J, Lee J S, Ray R I. The influence of marine biofilms on corrosion: A concise review [J]. Electrochim. Acta, 2008, 54: 2
[37] Qing Y C, Yang Z W, Xian J, et al. Corrosion behavior of Q235 steel under the interaction of alternating current and microorganisms [J]. Acta Metall. Sin., 2016, 52: 1142
[37] 卿永长, 杨志炜, 鲜俊等. 交流电和微生物共同作用下Q235钢的腐蚀行为 [J]. 金属学报, 2016, 52: 1142
[38] Cetin D, Aksu M L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. [J]. Corros. Sci., 2009, 51: 1584
[39] Javed M, Neil W, Stoddart P, et al. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion [J]. Biofouling, 2016, 32: 109
[40] Sreekumari K R, Nandakumar K, Kikuchi Y. Bacterial attachment to stainless steel welds: Significance of substratum microstructure [J]. Biofouling, 2001, 17: 303
[41] Javed M A, Stoddart P R, McArthur S L, et al. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel [J]. Biofouling, 2013, 29: 939
[42] Kanematsu H, Barry D M. Biofilm and Materials Science [M]. Switzerland: Springer, 2015
[43] Li K W, Whitfield M, Van Vliet K. Beating the bugs: Roles of microbial biofilms in corrosion [J]. Corros. Rev., 2013, 31: 73
[44] Eckert R B. Emphasis on biofilms can improve mitigation of microbiologically influenced corrosion in oil and gas industry [J]. Corros. Eng. Sci. Technol., 2015, 50: 163
[45] Stoodley P, Sauer K, Davies D G, et al. Biofilms as complex differentiated communities [J]. Ann. Rev. Microbiol., 2002, 56: 187
[46] Wang M F, Liu H F, Xu L M. Applied research on the competitive growth of bacteria in biological control of MIC [J].J. Chin. Soc. Corros. Prot., 2004, 24(3): 159
[46] (汪梅芳, 刘宏芳, 许立铭. 细菌竞争生长在微生物腐蚀防治中的应用研究 [J]. 中国腐蚀与防护学报, 2004, 24(3): 159)
[47] Enning D, Venzlaff H, Garrelfs J, et al. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust [J]. Environ. Microbiol., 2012, 14: 1772
[48] Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
[49] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
[50] Kato S. Microbial extracellular electron transfer and its relevance to iron corrosion [J]. Microb. Biotechnol., 2016, 9: 141
[51] Popoola L T, Grema A S, Latinwo G K, et al. Corrosion problems during oil and gas production and its mitigation [J]. Int.
[51] J. Ind. Chem., 2013, 4: 35
[52] Xu D, Jia R, Li Y, et al. Advances in the treatment of problematic industrial biofilms [J]. World J. Microbiol. Biotechnol., 2017, 33: 97
[53] Yan M C, Wang J Q, Han E-H, et al. Characteristics and evolution of thin layer electrolyte on pipeline steel under cathodic protection shielding disbonded coating [J]. Acta Metall. Sin., 2014, 50: 1137
[53] 闫茂成, 王俭秋, 韩恩厚等. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化 [J]. 金属学报, 2014, 50: 1137
[54] Yan M C, Yang S, Xu J, et al. Stress corrosion cracking of X80 pipeline steel at coating defect in acidic soil [J]. Acta Metall. Sin., 2016, 52: 1133
[54] 闫茂成, 杨霜, 许进等. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为 [J]. 金属学报, 2016, 52: 1133
[55] Shi X B, Yan W, Wang W, et al. Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking [J]. Mater. Des., 2016, 92: 300
[56] Shi X B, Yan W, Wang W, et al. Hydrogen-induced cracking resistance of novel Cu-bearing pipeline steel [J]. Acta Metall. Sin., 2018, 54: 1343
[56] 史显波, 严伟, 王威等. 新型含Cu管线钢的抗氢致开裂性能 [J]. 金属学报, 2018, 54: 1343
[57] Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
[57] 史显波, 徐大可, 闫茂成等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
[58] Shi X B, Yan W, Wang W C, et al. Effect of Cu addition in pipeline steels on microstructure, mechanical properties and microbiologically influenced corrosion [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 601
[59] Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[6] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[9] XU Congmin,LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[10] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[11] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[13] Juna CHEN,Jiajia WU,Peng WANG,Dun ZHANG. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on Corrosion Behavior of 907 Steel in Seawater[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[14] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[15] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
No Suggested Reading articles found!