Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (6): 607-614    DOI: 10.11902/1005.4537.2017.199
Current Issue | Archive | Adv Search |
Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized
Delin LAI,Gang KONG(),Chunshan CHE
1. Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
Download:  HTML  PDF(9999KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiO2conversion film was prepared on the surface of hot-dip galvanized (HDG) carbon steel Q235 in Ti(SO4)2solution with hydrogen peroxide H2O2as chelating agent. Then the prepared TiO2conversion film was further sealed via immersion in sodium silicate solution. The effect of conversion treatment time on the morphology and corrosion resistance of the TiO2conversion film was studied. While the morphology, composition and corrosion resistance of the sodium silicate sealed TiO2conversion film were characterized by means of SEM with EDS, XRD, XPS and electrochemical measurements. The results show that the conversion film consists of a large amount of TiO2nanospheres, which formed on surface of the HDG steel after a short-time immersion, and then with the increasing immersion time, the nanospheres are gradually covered by reaction product ZnO/Zn(OH)2and crack appears on the conversion film, correspondingly the corrosion resistance of the HDG steel first increases and then decreases. A complete and dense TiO2conversion film shows better corrosion resistance, but cracks on the film can cause pitting corrosion. After sealing treatment, a sodium silicate film may further cover the pre-formed TiO2conversion film, however, there are a large number of cracks in micron scale on the surface of such complex film. In general, after sodium silicate sealing treatment, the corrosion resistance of the short-time formed conversion film decreases, in the contrary, the corrosion resistance of long-time formed conversion film increases.

Key words:  TiO2      NaO·SiO2      conversion film      corrosion resistance      hot-dip galvanizing     
Received:  22 November 2017     
ZTFLH:  TG174.4  
Fund: Supported by National Natural Science Foundation of China(21103053);Supported by National Natural Science Foundation of China(91023002)
Corresponding Authors:  Gang KONG     E-mail:  konggang@scut.edu.con.

Cite this article: 

Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 607-614.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.199     OR     https://www.jcscp.org/EN/Y2018/V38/I6/607

Fig.1  General XPS spectra of T60 sample (a) , and fine spectra of Zn2p (b) and Ti2p (c)
Fig.2  XRD spectra of T60 and T60-SiO2samples (a) and the enlarged spectra (b, c)
Fig.3  Surface SEM images of the chemical conversion films formed after passivation for 10 s (a), 60 s (b), 300 s (c) and 1800 s (d)
Fig.4  EDS results of the smooth area (a) and particles (b) in Fig.3a
Fig.5  Surface SEM images of the samples after passivation for 10 s (a), 60 s (b), 300 s (c), 1800 s (d) and then sealing in NaO·SiO2solution
Fig.6  EDS result of the marked area in Fig.5a
Fig.7  PDP curves of TiO2conversion films formed after passivation for different time
SampleIcorr/ μA·cm-2Ecorr/ V (vsSCE)Rp/ Ω·cm2
HDG14.20-1.030695
T101.045-1.1438679
T600.551-1.03712843
T3004.201-1.1022309
T180015.37-1.109581
Table 1  Fitting values of various electrochemical parameters based on PDP curves in Fig.7
Fig.8  Nyquist (a) and Bode (b) plots of TiO2conversion films formed after passivation for different time
Fig.9  Equivalent circuit used for modeling of EIS of diff-erent conversion films
SampleRs/ Ω·cm2CPEf

Rf

Ω·cm2

CPEdlRct/ Ω·cm2
Yf/ sn·Ω-1·cm-2nfYdl/ sn·Ω-1·cm-2ndl
HDG1.623.1×10-50.804081.5×10-60.80368
T101.265.0×10-50.7518001.5×10-40.6710605
T600.956.5×10-50.6675201.3×10-30.856543
T3001.583.3×10-50.7616003.3×10-40.782750
T18001.029.4×10-50.702701.8×10-30.73750
Table 2  Fitting results of EIS plots based on equivalent circuit in Fig. 9
Fig.10  PDP curves of TiO2conversion films after sealing treatment in NaO·SiO2solution
SampleIcorr/ μA·cm-2Ecorr/ V (vsSCE)Rp/ Ω·cm2
T10-SiO20.41-1.0524122
T60-SiO20.31-1.01418854
T300-SiO20.75-1.0265700
T1800-SiO21.70-1.0133843
Table 3  Fitted result of PDP curves in Fig.10
Fig.11  Nyquist (a) and Bode (b) plots of NaO·SiO2mod-ified TiO2conversion films
Fig.12  Equivalent circuit used for modeling of EIS of NaO·SiO2modified conversion films
SampleRsΩ·cm2CPEf

Rf

Ω·cm2

CPEdl

Rct

Ω·cm2

RLL
Yf/ sn·Ω-1·cm-2nfYdl/ sn·Ω-1·cm-2ndl
T10-SiO20.721.30×10-50.92112502.4×10-40.500323245005900
T60-SiO23.965.53×10-50.67974204.1×10-40.99016000650032000
T300--SiO22.092.42×10-50.82028001.0×10-40.470100551000038000
T1800--SiO21.671.94×10-50.87010013.2×10-40.7952200525013500
Table 4  Fitted results of EIS plots based on equivalent circuit in Fig. 12
[1] Phanasgaonkar A,Raja V S.Influence of curing temperature, silica nanoparticles- and cerium on surface morphology and corrosion behaviour of hybrid silane coatings on mild steel[J].Surf. Coat. Technol.,2009,203:2260
[2] Hamlaoui Y,Tifouti L,Pedraza F.Corrosion behaviour of molybdate-phosphate-silicate coatings on galvanized steel[J].Corros. Sci.,2009,51:2455
[3] Ramezanzadeh B,Attar M M.An evaluation of the corrosion resistance and adhesion properties of an epoxy-nanocomposite on a hot-dip galvanized steel (HDG) treated by different kinds of conversion coatings[J].Surf. Coat. Technol.,2011,205:4649
[4] Hara M,Ichino R,Okido M,et al.Corrosion protection property of colloidal silicate film on galvanized steel[J].Surf. Coat. Technol.,2003,169/170:679
[5] Masuda Y,Sugiyama T,Seo W S,et al.Deposition mechanism of anatase TiO2on self-assembled monolayers from an aqueous solution[J].Chem. Mater.,2003,15:2469
[6] Saarimaa V,Kauppinen E,Markkula A,et al.Microscale distribution of Ti-based conversion layer on hot dip galvanized steel[J].Surf. Coat. Technol.,2012,206:4173
[7] Song Y W,Dong K H,Shan D Y,et al.Study of the formation process of titanium oxides containing micro arc oxidation film on Mg alloys[J].Appl. Surf. Sci.,2014,314:888
[8] Xu X H,Zhang X H,Liu W M.Fabrication of superhydrophobic surfaces with perfluorooctanoic acid modified TiO2/polystyrene na-nocomposites coating[J].Colloids Surf.,2009,341A:21
[9] Yuan M R,Lu J T,Kong G.Effect of SiO2: Na2O molar ratio of sodium silicate on the corrosion resistance of silicate conversion coatings[J].Surf. Coat. Technol.,2010,204:1229
[10] Vargas M A,Rodríguez-Páez J E.Amorphous TiO2nanoparticles: Synthesis and antibacterial capacity[J]. J. Non-Cryst. Solids,2017,459:192
[11] Li Z Q,Zhu Y,Wang J T,et al.Size-controlled synthesis of dispersed equiaxed amorphous TiO2nanoparticles[J].Ceram. Int.,2015,41:9057
[12] Lupan O,Chow L,Chai G,et al.Fabrication and characterization of Zn-ZnO core-shell microspheres from nanorods[J].Chem. Phys. Lett.,2008,465:249
[13] Chigane M,Shinagawa T,Tani J I.Preparation of titanium dioxide thin films by indirect-electrodeposition[J].Thin Solid Films,2017,628:203
[14] Meng X Q,Li L Q,Zou K S,et al.The effect of SiO2on TiO2up-conversion photoluminescence film[J].Opt. Mater.,2014,37:367
[15] Beverskog B,Puigdomenech I.Revised pourbaix diagrams for zinc at 25-300 °C[J].Corros. Sci.,1997,39:107
[16] Park J H,Kim W S,Jo D H,et al.Effect of Ce conversion underlayer coating on the photo-catalytic activity of TiO2sol-gel film deposited on hot-dip GI[J]. J Ind Eng. Chem.,2014,20:1965
[17] Yuan M R,Lu J T,Kong G,et al.Self healing ability of silicate conversion coatings on hot dip galvanized steels[J].Surf. Coat. Technol.,2011,205:4507
[18] Kong G,Lu J T,Wu H J.Post treatment of silane and cerium salt as chromate replacers on galvanized steel[J]. J.Rare Earths,2009,27:164
[19] Liang M M,Wei Y H,Hou L F,et al.Fabrication of a super-hydrophobic surface on a magnesium alloy by a simple method[J]. J. Alloy. Compd.,2016,656:311
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] XIE Xuan, LIU Li, WANG Fuhui. Effect of Preparation and Surface Modification of TiO2 on Its Photoelectrochemical Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[8] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[9] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[12] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[13] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[14] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[15] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
No Suggested Reading articles found!