Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (6): 565-572    DOI: 10.11902/1005.4537.2017.213
Current Issue | Archive | Adv Search |
Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution
Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU()
1. College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(1925KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of pH value on the corrosion behavior of X70 steel in an artificial liquid containing sulfate-reducing bacteria (SRB) was investigated by means of potentiondynamic polarization, electrochemical impedance spectroscopy (EIS). The artificial liquid aims to simulate a sea mud extract, while the very sea mud was collected from the shallow seabed from off shore at Sanya of Hainan Island. The results show that the pH value of the simulated solution can affect the growth of SRB, and thus further affect the corrosion behavior of X70 steel. The solution with pH=8 is the best environment for SRB growth, pH=6 is the next and pH=10 is the worst. The SRB growth phase by pH=8 can be divided into three phases: logarithmic growth-, stable growth- and decay-phase. SRB growth phase by pH=6 and pH=10 can be divided into two phases: logarithmic growth- and decay-phase. In the logarithmic growth phase, the number of SRB is less and the effect of microbial corrosion is weak, therefore theEcorrof X70 is higher. However, when the number of SRB increases, the effect of microbial corrosion becomes serious, while the formed biofilm is loose and easy to fall off, which result in serious local corrosion, thereby theEcorrgradually decreases. In the simulated solution with pH=8 the effect of microbial corrosion is highest, which results further in the fastest corrosion rate of the steel. In the simulated solution with pH=10, the effect of microbial corrosion is weak, thus the passivation film can form easily on the steel surface, therefore, results in the slowest corrosion rate of the steel.

Key words:  X70 steel      sea mud simulation solution      pH value      sulfate-reducing bacteria      microbial corrosion     
Received:  18 December 2017     
ZTFLH:  TG174.36  
Fund: Supported by National Natural Science Foundation of China(51574147);Education Fund Item of Liaoning Province(L2017LZD004)
Corresponding Authors:  Ming WU     E-mail:  wuming0413@163.com

Cite this article: 

Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 565-572.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.213     OR     https://www.jcscp.org/EN/Y2018/V38/I6/565

Fig.1  Growth curves of SRB in the South China Sea mud simulation solutions with different pH values
Fig.2  Ecorrcurves of X70 steel in the South China Sea mud simulation solutions containing SRB at different pH values
Fig.3  Polarization curves of X70 steel after immersion in the South China Sea mud simulation solutions containing SRB at different pH values for 4 d (a), 7 d (b), 10 d (c) and 14 d (d)
Fig.4  Corrosion current densities of X70 steel in the South China Sea mud simulation solutions containing SRB at different pH values
Fig.5  Diagrammatic representation of corrosive effect of SRB
Fig.6  Nyquist (a1~d1) and Bode (a2~d2) plots of X70 steel after immersion in the South China Sea mud simulation solutions containing SRB at different pH values for 4 d (a1, a2), 7 d (b1, b2), 10 d (c1, c2) and 14 d (d1, d2)
Fig.7  Equivalent circuit of EIS for X70 steel after immer-sion in the South China Sea mud simulation soluti-ons containing SRB at different pH values
pHTime / dRs/ Ω·cm2Qf/ 10-4F·cm-2n1Rf/ Ω·cm2Qdl/ 10-4F·cm-2n2Rct/ Ω·cm2
6415.895.8470.90536.88614.1800.93554851
715.2351.370.908217.69050.9700.97184280
1015.93115.3---230.30070.950---3648
1415.236.323---9.84638.8300.95784398
8416.3111.470.909013713.808---1417
715.3069.190.82787.21058.4500.86811309
1014.99275.3---18.450332.800---1270
1417.2199.94---9.720162.7---2455
10415.1158.480.8911317716.7101.00002451
714.4374.790.873825.92053.9500.96684339
1015.1112.46---2.42864.8700.77645931
1414.3638.830.823516.05016.2601.00004542
Table 1  Fitting data of EIS of X70 steel after immersion in the South China Sea mud simulation solutions containing SRB at different pH values
Fig.8  Rpcurves of X70 steel in the South China Sea mud simulation solutions containing SRB at different pH values
[1] Al-Dakkan K,Alsaif K.On the design of a suspension system for oil and gas transporting pipelines below ocean surface[J].Arabian J. Sci. Eng.,2012,37:2017
[2] Liu T,Zhang Y F,Chen X,et al.Effect of SRB on corrosion behavior of X70 steel in a simulated soil solution[J]. J Chin. Soc. Corros. Prot., 2014,34:112
[2] 刘彤, 张艳飞, 陈旭, 等. SRB对X70钢在土壤模拟溶液中腐蚀行为的影响[J].中国腐蚀与防护学报,2014,34:112
[3] Duan J Z,Ma S D,Huang Y L.Study on regional seabed sediment induced corrosion[J].Corros. Sci. Prot. Technol.,2001,13:37
[3] 段继周,马士德,黄彦良.区域性海底沉积物腐蚀研究进展[J].腐蚀科学与防护技术,2001,13:37
[4] Yu N,Gao J F,Zhang G G,et al.Corrosion behavior of carbon steel pipelines under different deposits in oil and gas transportation[J]. J Univ. Sci. Technol. Beijing, 2015,37:461
[4] 喻能, 高继峰, 张国安,等. 碳钢油气输送管道不同沉积物下的腐蚀行为[J].工程科学学报,2015,37:461
[5] Muyzer G,Stams A J M.The ecology and biotechnology of sulphate-reducing bacteria[J].Nat. Rev. Microbiol.,2008,6:441
[6] Wan Y,Zhang D,Liu H Q,et al.Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions[J].Electrochim. Acta,2010,55:1528
[7] Tributsch H,Rojas-Chapana J A,B?rtels C C,et al.Role of transient iron sulfide films in microbial corrosion of steel[J].Corrosion,1998,54:216
[8] Koval V P,Mindyuk A K,Vasilenko I I.Effect of temperature and form of depolarization on stress-corrosion cracking of carbon steel[J].Soviet Mater. Sci.,1973,6:627
[9] Alves V A,Brett C M A.Characterisation of passive films formed on mild steels in bicarbonate solution by EIS[J].Electrochim. Acta,2002,47:2081
[10] Han D,Jiang Y M,Shi C,et al.Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions[J]. J. Mater. Sci.,2012,47:1018
[11] Lv J L,Luo H Y.Effect of temperature and chloride ion concentration on corrosion of passive films on nano/ultrafine grained stainless steels[J]. J Mater. Eng. Perform.,2014,23:4223
[12] Wei H.Corrosion behavior of API X60 pipeline steels in sea mud[D].Qingdao:China Ocean University,2005
[12] 魏华.API X60管线钢在海泥中的腐蚀行为研究[D].青岛:中国海洋大学,2005
[13] Zhang L,Du C W,Li X G.Effects of temperature, oxygen concentration and pH value on electrochemical behavior of X70 pipeline steel[J].Heat Treat. Met.,2008,33(11):36
[13] 张亮,杜翠薇,李晓刚.温度、pH值和氧浓度对X70管线钢电化学行为的影响[J].金属热处理,2008,33(11):36
[14] Wang D,Xiao H Z,Xie F,et al.Effects of temperature, HCO3-and pH value on corrosion behavior of X70 Steel in Chengdu simulated soil solution[J].Mater. Prot.,2017,50(1):77
[14] 王丹,肖辉宗,谢飞等.温度、HCO3-和pH值对X70钢在成都土壤模拟溶液中腐蚀行为的影响[J].材料保护,2017,50(1):77
[15] Wei H,Wang X T,Gao R J,et al.Corrosion behavior of SML, ERW pipeline steels exposed to seamud[J].Electrochemistry,2005,11:314
[15] 魏华,王秀通,高荣杰等.SML, ERW管线钢在海泥中的腐蚀行为[J].电化学,2005,11:314
[16] Guo Q L,Gu Z J,Zhang Z G.Electrochemical behavior carbon steel in seamud[J]. J Chin. Soc. Corros. Prot., 1999,19:315
[16] 郭琦龙, 辜志俊, 张志刚.碳钢在海泥中的电化学行为[J].中国腐蚀与防护学报,1999,19:315
[17] Huang Y L,Zhu Y Y,Huang S D,et al.Hydrogen permeation investigation of a marine steel in the sea mud with sulfate-reducing bacteria[J]. J Chin. Soc. Corros. Prot., 2008,28:355
[17] 黄彦良, 朱永艳, 黄偲迪, 等. 海洋结构用钢在海泥中的氢渗透行为[J].中国腐蚀与防护学报,2008,28:355
[18] Sun C,Han E-H,Wang X.Effects of SRB on corrosion of carbon steel in seamud[J].Corros. Sci. Prot. Technol.,2003,15:104
[18] 孙成,韩恩厚,王旭.海泥中硫酸盐还原菌对碳钢腐蚀行为的影响[J].腐蚀科学与防护技术,2003,15:104
[19] Ma S D,Li Y T,Xie X B,et al.Electrochemical measurement of steel corrosion in seabottom sediment with “MD” method[J].Chin. J. Oceanol. Limnol.,1996,14:154
[20] Zhang J L,Hou B R,Guo G Y,et al.Effect of sulphate-reducing bacteria on electro-chemical corrosion behavior of 16mn steel in sea mud[J].Chin. J. Oceanol. Limnol.,2001,19:87
[21] Huang G Q.Corrosion behaviour of carbon steels immersed in sea areas of China[J].Corros. Sci. Prot. Technol.,2001,13:81
[21] 黄桂桥.碳钢在我国不同海域的海水腐蚀行为[J].腐蚀科学与防护技术,2001,13:81
[22] Yin B.The research of MIC and protection of copper-nickel alloy in the marine environment[D].Qingdao:Ocean University of China,2012
[22] 尹兵.海洋环境下铜镍合金的微生物附着腐蚀与防护研究[D].青岛:中国海洋大学,2012
[23] Xie W J,Li D,Hu Y L,et al.Application of free corrosion potential to predict corrosion damage of LY12CZ aluminum alloy[J]. J Chin. Soc. Corros. Prot., 1999,19:95
[23] 谢伟杰, 李荻, 胡艳玲, 等. 用自腐蚀电位预测LY12CZ铝合金的腐蚀损伤[J].中国腐蚀与防护学报,1999,19:95
[24] Wu T Q,Ding W C,Zeng D C,et al.Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) electrochemical analysis[J]. J Chin. Soc. Corros. Prot., 2014,34:346
[24] (吴堂清, 丁万成, 曾德春, 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅰ)电化学分析[J].中国腐蚀与防护学报,2014,34:346
[25] Dong Z H,Liu T,Liu H F.Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J].Biofouling,2011,27:487
[26] Liu H W,Xu D K,Wu Y N,et al.Research progress in corrosion of steels induced by sulfate reducing bacteria[J].Corros. Sci. Prot. Technol.,2015,27:409
[26] 刘宏伟,徐大可,吴亚楠等.微生物生物膜下的钢铁材料腐蚀研究进展[J].腐蚀科学与防护技术,2015,27:409
[27] Liu T,Liu H,Hu Y,et al.Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel[J].Mater. Corros.,2009,60:218
[28] King R A,Miller J D A,Smith J S.Corrosion of mild steel by iron sulphides[J].Br. Corros. J.,1973,8:137
[29] Wu T Q,Yan M C,Zeng D C,et al.Microbiologically induced corrosion of X80 pipeline steel in a near-neutral pH soil solution[J].Acta Metall. Sin. (Engl. Lett.),2015,28:93
[30] Miranda E,Bethencourt M,Botana F J,et al.Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator[J].Corros. Sci.,2006,48:2417
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[3] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[4] QI Peng, WAN Yi, ZENG Yan, ZHENG Laibao, ZHANG Dun. Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[5] Tangqing WU,Zhaofen ZHOU,Xinming WANG,Dechuang ZHANG,Fucheng YIN,Cheng SUN. Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[6] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[7] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[8] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[9] Yu TENG,Xu CHEN,Chuan HE,Yichuang WANG,Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[10] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[11] Xiu JIANG,Xiaoliang SONG,Dingrong QU,Xiaohui LIU. Corrosion Behavior of X70 Mild Steel during Transportation of Gaseous- and Supercritical-CO2 Fluids[J]. 中国腐蚀与防护学报, 2016, 36(3): 225-230.
[12] Tao HUANG,Xiaoping CHEN,Xiangdong WANG,Fengyi MI,Rui LIU,Xiangyang LI. Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[13] CHANG Qinpeng, CHEN Youyuan, SONG Fang, PENG Tao. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[14] XING Yunying, LIU Zhiyong, DU Cuiwei, LI Xiaogang, LIU Ranke, ZHU Min. Influence of H2S Concentration and pH Value on Corrosion Behavior of Weld Joint of X65 Subsea Pipeline Steel[J]. 中国腐蚀与防护学报, 2014, 34(3): 231-236.
[15] LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu. Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(2): 112-118.
No Suggested Reading articles found!