Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (6): 543-550    DOI: 10.11902/1005.4537.2017.196
Current Issue | Archive | Adv Search |
Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions
Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI(),Lanfei XU,Xiaowei LI,Rongqi CHENG
1. Luoyang R&D Center of Technology/Sinopec Engineering Group CO., LTD., Luoyang 471003, China
Download:  HTML  PDF(21933KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of sodium nitrate on the corrosion behavior of 304L in nitric acid-sodium nitrate solutions at 120 and 135oC respectively was studied by means of immersion test, potentiodynamic polarization curve measurement and corrosion morphology characterization. The result showed that the corrosion of 304L in sodium nitrate solution was very slight. However, the presence of sodium nitrate induced or exacerbated the intergranular corrosion of 304L in nitric acid-sodium nitrate solution. The corrosion of 304L in the liquid- and steam-phase of nitric acid-sodium nitrate solution became much more severe with the increasing sodium nitrate concentration or temperature. The steel in the steam tends to experience intergranular corrosion, thereby, partial grains on the steel surface were falled off. The increase of temperature can enhance the effect of sodium nitrate on the corrosion of 304L stainless steel.

Key words:  austenitic stainless steel      nitric acid      nitrate      intergranular corrosion     
Received:  20 November 2017     
ZTFLH:  TG172.6  
Fund: Supported by SINOPEC Scientific Research Project(315108)
Corresponding Authors:  Xin'an CUI     E-mail:  cuixa.lpec@sinopec.com

Cite this article: 

Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 543-550.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.196     OR     https://www.jcscp.org/EN/Y2018/V38/I6/543

Temperature / ℃Corrosive medium / %Liquid phase corrosion rate / mm·a-1Vapor phase corrosion rate / mm·a-1
13523%NaNO3<0.001<0.001
1352%HNO30.0150.003
1352%HNO3-23%NaNO30.2620.060
1354%HNO30.0160.077
1354%HNO3-23%NaNO30.3260.093
Table 1  Corrosion rates of 304L steel in NaNO3, HNO3and HNO3-NaNO3solutions and steams
Fig.1  SEM images of 304L stainless steel after corrosion in the solution (a) and steam (b) of 23%NaNO3solution at 135 ℃
Fig.2  SEM images of 304L stainless steel after corrosion in the solutions (a, c, e, g) and steams (b, d, f, h) of 2%HNO3(a, b), 4%HNO3(c, d), 2%HNO3-23%NaNO3(e, f) and 4%HNO3-23%NaNO3(g, h)
Fig.3  Section micrographs of 304L stainless steel after corrosion in the solution (a) and steam (b) of 4%HNO3-23%NaNO3at 135 ℃
Fig.4  Potentiodynamic polarization curves of 304L stain-less steel in 2%HNO3and 2%HNO3-23%NaNO3solutions at 30 ℃
Corrosive mediumLiquid phase corrosion rate / mm·a-1Vapor phase corrosion rate / mm·a-1
2%HNO30.0150.003
2%HNO3-10%NaNO30.0230.036
2%HNO3-15%NaNO30.0290.051
2%HNO3-23%NaNO30.2620.060
4%HNO30.0160.077
4%HNO3-10%NaNO30.0470.078
4%HNO3-15%NaNO30.0540.084
4%HNO3-23%NaNO30.3260.093
Table 2  Corrosion rates of 304L stainless steel in the solutions and steams of 2%HNO3-(0, 10%, 15%, 23%) NaNO3at 135 ℃
Fig.5  SEM images of 304L stainless steel after corrosion in the solutions (a, c) and steams (b, d) of 2% HNO3-10%NaNO3(a, b) and 2%HNO3-15%NaNO3(c, d)
Fig.6  SEM images of 304L stainless steel after corrosion in the solutions (a, c) and steams (b, d) of 4% HNO3-10%NaNO3(a, b) and 4%HNO3-15% NaNO3(c, d)
Temperature / ℃Corrosive medium / %Liquid phase corrosion rate / mm·a-1Vapor phase corrosion rate / mm·a-1
1202%HNO3-23%NaNO30.0010.005
1352%HNO3-23%NaNO30.2620.060
1204%HNO3-23%NaNO30.0030.024
1354%HNO3-23%NaNO30.3260.093
Table 3  Corrosion rates of 304L stainless steel in the solutions and steams of HNO3-NaNO3at different temperatures
Fig.7  SEM images of 304L stainless steel after corrosion in the solution (a, c) and steam (b, d) of 2% HNO3-23%NaNO3at 120 ℃ (a, b) and 135 ℃ (c, d)
Fig.8  SEM images of 304L stainless steel after corrosion in the solution (a, c) and steam (b, d) of 4%HNO3-23%NaNO3at 120 ℃ (a, b) and 135 ℃ (c, d)
[1] Bhise S,Kain V.Methodology based on potential measurement for predicting corrosion behavior of SS 304L in boiling nitric acid containing oxidising ions[J].Br. Corros. J.,2012,47:61
[2] Fauvet P,Balbaud F,Robin R,et al.Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants[J]. J.Nucl. Mater.,2008,375:52
[3] Laghoutaris P,Gruet N,Gwinner B,et al.Intergranular corrosion of stainless steel in nitric media[A].Corrosion2015[C].Dallas, Texas: NACE International,2015
[4] Kong L Z,Lu W,Xu Y H,et al.Corrosion failure reasons for welded joint of stainless steel pipeline for nitrate transport[J].Corros. Prot.,2017,38:356
[4] 孔令真,路伟,徐一慧等.不锈钢硝酸输送管道焊缝的腐蚀失效原因[J].腐蚀与防护,2017,38:356
[5] Mickalonis J I.Testing of 304L stainless steel in nitric acid environments with fluorides and chlorides[A].Corrosion 2011[C].Houston, Texas: NACE International,2011
[6] Kolman D G,Ford D K,Butt D P,et al.Corrosion of 304 stainless steel exposed to nitric acid-chloride environments[A].Corrosion 97[C].New Orleans, Louisiana: NACE International,1997
[7] Wang W,Luo M,Zhang Q F.Corrosion resistance of superpurity austenitic stainless steel in boiling nitric acid containing Cr6+[J]. J. Iron Steel Res.,2009,21(1):47
[7] 王玮,罗明,张启富.沸腾稀硝酸中Cr6+对高纯不锈钢耐蚀性的影响[J].钢铁研究学报,2009,21(1):47
[8] Wang X L,Wu J Z,Tan S P.Electrochemical corrosion of 304 austenitic stainless steel in nitric acid solutions[J]. J. Nucl. Radiochem.,2017,39:223
[8] 王祥丽,吴继宗,谈树苹等.304奥氏体不锈钢在硝酸溶液体系中的电化学腐蚀行为[J].核化学与放射化学,2017,39:223
[9] Takeuchi M,Whillock G O H.Effect of NOxgases on corrosion of stainless stell in hot nitric acid solutions[J].Br. Corros. J.,2013,37:199
[10] Kato C,Yano M,Kiuchi K,et al.Effects of a heat-transfer on corrosion of zirconium in a boiling nitric acid solution[J].Zairyo-to-Kankyo,2003,52:35
[11] Balbaud F,Sanchez G,Santarini G,et al.Equilibria between gas and liquid phases for concentrated aqueous solutions of nitric acid[J].Eur. J. Inorg. Chem.,1999,1999:277
[12] Balbaud F,Sanchez G,Santarini G,et al.Cathodic reactions involved in corrosion processes occurring in concentrated nitric acid at 100 ℃[J].Eur. J. Inorg. Chem.,2000,2000:665
[13] Wilding M W,Paige B E.Idaho national engineering laboratory survey on corrosion of metal and alloys in solutions containing nitric acid[R].Report N 77-32302, National Technical Information Service,1976
[14] Balbaud F,Sanchez G,Fauvet P,et al.Mechanism of corrosion of AISI 304L stainless steel in the presence of nitric acid condensates[J].Corros. Sci.,2000,42:1685
[15] Schosger J P,Dabosi F,Demay R,et al.Influence of corrosion products on the passivation of AISI 304L stainless steel in nitric acid media[A].Proceedings of Eurocorr 96 Conference[C].Nice, France,1996
[1] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[2] Tangqing WU,Zhaofen ZHOU,Xinming WANG,Dechuang ZHANG,Fucheng YIN,Cheng SUN. Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[3] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[4] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[5] Danyang LIU, Jiexia WANG, Jinfeng LI, Yonglai CHEN, Xuhu ZHANG, Xiuzhi XU, Ziqiao ZHENG. Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[6] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[7] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[8] Ming ZHU,Guyue ZHOU,Huihui ZHANG. Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element[J]. 中国腐蚀与防护学报, 2017, 37(1): 16-22.
[9] Xinyuan PENG,Xianliang ZHOU,Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[10] XU Long, YAO Xi, LI Jingfeng, CAI Chao. Correlation Between Intergranular Corrosion Behavior and Aging Treatment of 2099 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[11] YU Shurong,HE Yanni,LI Shuxin,WANG Lu. Effect of Grain Size on Susceptibility to Intergranular Corrosion for Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[12] ZHANG Xuming, WANG Jianjun, LIU Chunming, HUANG Lijuan, YIN Yuejun. PREPARATION OF CERIUM-SALT-DOPED VINYLTRIETHOXYSILANE FILMS ON SURFACES OF Q235 STEEL AND ITS CORROSION-RESISTING PROPERTY[J]. 中国腐蚀与防护学报, 2012, 32(6): 455-459.
[13] YIN Kaiju, QIU Shaoyu, TANG Rui, HONG Xiaofeng, ZHANG Lefu, ZHANG Qiang. CORROSION BEHAVIOR OF SUPER-AUSTENITIC STAINLESS STEEL AL-6XN IN SUPERCRITICAL WATER[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.
[14] FENG Wanli, ZHANG Lefu, MA Mingjuan. EFFECTS OF ROLLING ON THE SPECIAL GRAIN BOUNDARIES AND INTERGRANULAR CORROSION OF ALLOY 690[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[15] JIANG Ke, CHEN Xuedong, YANG Tiecheng, ZHANG wei, LIANG Chunlei. HIGH TEMPERATURE NAPHTHENIC ACID CORROSION RESEARCH OF TYPICAL AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(1): 59-63.
No Suggested Reading articles found!