Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (6): 511-516    DOI: 10.11902/1005.4537.2017.188
Current Issue | Archive | Adv Search |
Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water
Jiapeng LIAO1,2,Xinqiang WU1()
1. Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration, CRRC Zhuzhou Locomotive Co., Ltd., Zhuzhou 412001, China
Download:  HTML  PDF(533KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of notch geometry on fatigue performance of structural materials for light water reactor plants was reviewed. Four factors affecting the fatigue behavior of notched specimen were taken into account, including characteristics of materials, stress state, corrosive environments and notch geometry. The possible mechanisms of fatigue crack initiation and propagation of notched specimen for nuclear-grade materials in high temperature high pressure water have been discussed. The coming possible research topics and directions are also proposed.

Key words:  corrosion fatigue      light water reactor plant      notch effects     
Received:  15 November 2017     
ZTFLH:  TG172.8  
Fund: Supported by National Science and Technology Major Project(2017ZX06002003-004-002);Key Programs of the Chinese Academy of Sciences(ZDRW-CN-2017-1);the Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences(SCJJ-2013-ZD-02)
Corresponding Authors:  Xinqiang WU     E-mail:  xqwu@imr.ac.cn

Cite this article: 

Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 511-516.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.188     OR     https://www.jcscp.org/EN/Y2018/V38/I6/511

ClassificationTypical partConstruction material
Bolt holePressure vessel headStainless steel (SS)
Welding discontinuitiesPressure vessel, SG tubes, pressurizer, small-diameter pipelinesAlloy 690/52 or 152
Primary loop circulation piping system, reactor internalsSS/Ni-based alloy
Pressure vessel, SG safe-end welds, pressurizerSS/ Ni-based alloy/Low alloy steel
Pressure vesselButt welding of low alloy steel
Table 1  Typical geometric discontinuities and their construction materials in LWR nuclear power plants
Influencing factorTesting environment
Material: Composition, microstructure, inclusions, surface stateRT air, LWR water
Notch geometry: Notch type, notch angle, notch depth, notch root radiusRT air, LWR water
Stress state: Stress amplitude, stress rate, wave formRT air, LWR water
Environment: Temperature, pressure, pH, DO, DHLWR water
Table 2  Main effects on fatigue behavior of notched specimen in room temperature (RT) air and LWR water environment
[1] Chopra O K,Shack W J.Effect of LWR coolant environments on the fatigue life of reactor materials[R].NUREG/CR-6909, ANL-06/08,2007
[2] Environmental fatigue evaluation method for nuclear power plants[R].JNES-SS-1005,2011
[3] Jeong I S,Kim W J,Kim T R,et al.Strain rate change from 0.04 to 0.004%/s in an environmental fatigue test of CF8M cast stainless steel[J].Nucl. Eng. Technol,2011,43:83
[4] Wu X,Katada Y.Influence of cyclic strain rate on environmentally assisted cracking behavior of pressure vessel steel in high-temperature water[J].Mater. Sci. Eng,2004,A379:58
[5] Tan J,Wu X,Han E-H,et al.The effect of dissolved oxygen on fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water[J].Corros. Sci.,2016,102:394
[6] Wu X,Katada Y.Inclusion-involved fatigue cracking in high temperature water[J].Mater. Corros.,2005,56:305
[7] Katada Y,Sato S.Effect of temperature on corrosion fatigue behavior of low alloy pressure vessel steels in high temperature water[A].Proceedings of the Eighth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C].Amelia Island,1997
[8] Scott P M,Truswell A E,Druce S G.Corrosion fatigue of pressure-vessel steels in PWR environments-influence of steel sulfur-content[J].Corrosion,1984,40:350
[9] Wu X,Han E-H,Ke W,et al.Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water[J].Nucl. Eng. Des.,2007,237:1452
[10] Kuhn P,Hardrath H F.An engineering method for estimating notch-size effect in fatigue tests on steel[R].NACA TN2085, Washington,1952
[11] Peterson R E.Metal Fatigue: Notch Ssensitivity[M].New York:Mc Graw-Hill,1959
[12] Manson S S.Fatigue: A complex subject-some simple approximations[A].SEAE Annual Meeting[C].Cleveland,1964
[13] Coffin L F J.A study of the effects of cyclic thermal stresses on a ductile metal[J].Trans. ASME,1954,76:931
[14] Neuber H.Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law[J].ASME J. Appl. Mech.,1961,28:544
[15] Molski K,Glinka G.A method of elastic-plastic stress and strain calculation at a notch root[J].Mater. Sci. Eng,1981,50:93
[16] Liu L J.On the notch effects of high strength bolt in grid structures with bolt-sphere joints[J].J. Xiamen Univ,2005,44:783
[16] 刘丽君.钢网架螺栓球节点用高强螺栓的缺口效应分析[J].厦门大学学报,2005,44:783
[17] Xi W,Yao W X.Method for fatigue life prediction of notched specimen considering size effect[J]. J Nanjing. U. Aeronaut. Astronautics,2013,45:497
[17] 奚蔚,姚卫星.一种考虑尺寸效应的缺口件疲劳寿命预测方法[J].南京航空航天大学学报,2013,45:497
[18] Feng X F,Ye X B,Ye D Y,et al.Notch fatigue strength of 2024-T351 aluminum alloy in moist air[J]. J Mater. Sci. Eng,2014,32:417
[18] 冯先锋,叶序斌,叶笃毅等.潮湿空气环境下2024-T351铝合金的缺口疲劳强度[J].材料科学与工程学报,2014,32:417
[19] Sakane M,Itoh T,Susaki T,et al.Life prediction for notched components in nonproportional low cycle fatigue-Experiment and FEM analysis[A].Pressure Vessel and Piping Codes and Standards[C].San Diego,2004
[20] Taylor D,Wang G.The validation of some methods of notch fatigue analysis[J].Fatigue Fract. Eng. M.,2000,23:387
[21] Li J,Wu X Q,Han E-H,et al.A review of corrosion failure of welded structural metallic materials for light water reactor plant[J].Corros. Sci. Prot. Technol.,2014,26:1
[21] 李江,吴欣强,韩恩厚等.核电焊接结构材料腐蚀失效研究现状及进展[J].腐蚀科学与防护技术,2014,26:1
[22] H?nninen H.Material development in new reactor designs- Gen III and SCWR concept, 20th International Conference on Structural Mechanics in Reactor Technology (SMiRT)[R].Dipoli Congress Centre, Espoo, Finland, August 9-14,2009
[23] Sakaguchi K,Asada Y,Itatani M,et al.Evaluation of environmental effects on the fatigue of notched specimen of austenitic stainless steel using modified rate approach method[A].Pressure Vessel and Piping Codes and Standards[C].San Diego,2004
[24] Itatani M,Saito T,Sakaguchi K,et al.Evaluation for environment al fatigue of notched specimen of Ni-base alloy[A].2007 ASME Pressure Vessels and Piping Division Conference[C].San Antonio,2007
[25] Itatani M,Iida K,Ogawa K.Effect of loading rate on the fatigue strength of notched carbon steel in high temperature water[A].Pressure Vessel and Piping Codes and Standards,Vessel and Piping Codes and Standards[C].San Diego,1998
[26] Kim Y H,Fine M E,Mura T.Fatigue crack initiation theory[A].AIME 109th Annual Meeting[C].Las Vegas,1980
[27] Gomez F J,Elices M.A fracture criterion for blunted V-notched samples[J].Int. J. Fracture,2004,127:239
[28] Gomez F J,Elices M.A fracture criterion for sharp V-notched samples[J].Int. J. Fracture,2003,123:163
[29] Lazzarin P,Filippi S.A generalized stress intensity factor to be applied to rounded V-shaped notches[J].Int. J. Solid. Struct.,2006,43:2461
[30] Berto F,Lazzarin P.Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches[J].Mater. Sci. Eng.,2014,R75:1
[31] Lazzarin P,Tovo R,Meneghettit G.Fatigue crack initiation and propagation phases near notches in metals with low notch sensitivity[J]. Int. J. Fatigue,1997,19:647
[32] N-A Noda,Takase Y.Stress concentration formula useful for all notch shape in a round bar (comparison between torsion, tension and bending)[J].Int. J. Fatigue,2006,28:151
[33] Pilkey W D,Pilkey D F.Peterson's Stress Concentration Factors[M].3rd Ed. Hoboken, New Jersey:John Wiley & Sons, Inc,2008
[34] Boukharouba T,Tamine T,Niu L,et al.The use of notch stress intensity factor as a fatigue crack initiation parameter[J].Eng. Fract. Mech.,1995,52:503
[35] Sakane M,Zhang S,Kim T.Notch effect on multiaxial low cycle fatigue[J].Int. J. Fatigue,2011,33:959
[36] Sakane M,Ohnarni M.Notch effect in low-cycle fatigue at elevated temperatures-Life prediction from crack initiation and propagation considerations[J]. J Eng. Mater. Technol.,1986,108:279
[37] Kunihiro I,Katsuyuki S,Shuzo U,et al.Compilation of low-cycle fatigue data of reactor structural materials[R].JAERI-M, Japan,1992
[38] Xu S,Wu X Q,Han E-H,et al.Crack initiation mechanisms for low cycle fatigue of type 316Ti stainless steel in high temperature water[J].Mater. Sci. Eng,2008,A490:16
[39] Meng F,Wang J,Han E-H,et al.Effects of scratching on corrosion and stress corrosion cracking of Alloy 690TT at 58 °C and 330 °C[J].Corros. Sci.,2009,51:2761
[40] Xu S,Wu X Q,Han E-H,et al.Effects of dynamic strain aging on mechanical properties of SA508 class 3 reactor pressure vessel steel[J]. J. Mater. Sci.,2009,44:2882
[41] Tan J,Wu X,Han E-H,et al.Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water[J].Corros. Sci.,2014,88:349
[42] Tan J,Wu X,Han E-H,et al.Corrosion fatigue behavior of Alloy 690 steam generator tube in borated and lithiated high temperature water[J].Corros. Sci.,2014,89:203
[43] Seifert H P,Ritter S,Leber H J.Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions[J].Corros. Sci.,2012,55:61
[44] Hirose Y,Mura T.Crack nucleation and propagation of corrosion fatigue in high-strength steel[J].Eng. Fract. Mech.,1985,22:859
[45] Umeda H,Sakane M,Ohmani M.Notch root displacement (NRD) approach to predict crack initiation life of notched specimen in high-temperature multiaxial low cycle fatigue[J]. J Eng. Mater. Technol.,1990,112:429
[46] Umeda H,Ohnami M.Notch effect in biaxial low cycle fatigue at elevated temperatures[J].ASME,1989,111:286
[47] Hanninen H,Torronen K,Kemppainen M,et al.On the mechanisms of environment sensitive cyclic crack-growth of nuclear-reactor pressure-vessel steels[J].Corros. Sci.,1983,23:663
[48] Ford F P.Quantitative prediction of environmentally assisted cracking[J].Corros. Sci.,1996,52:375
[49] Wang R.Corrosion Fatigue of Metal Materials[M].Xi'an:Northwestern Polytechnical University Press Co. Ltd.,2001
[49] 王荣.金属材料的腐蚀疲劳[M].西安:西北工业大学出版社,2001)
[1] Xiaoqiang LIU,Xuelian XU,Jibo TAN,Yuan WANG,Xinqiang WU,Yuli ZHENG,Fanjiang MENG,En-Hou HAN. Effect of Reactor Coolant Environment on Fatigue Performance of Alloy 690 Steam Generator Tubes[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[2] LIANG Rui,ZHANG Xinyan,LI Shuxin,JIANG Feng,CHEN Shuaifu. Effect of Semi-elliptical Pit on Stress Concentration of Round Bar[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[3] TAN Jibo, WU Xinqiang, HAN En-Hou. REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[4] ZHOU Huamao WANG Jianqiu ZHANG Bo HAN Enhou ZANG Qishan. ACOUSTIC EMISSION SIGNAL ANALYSIS FOR ROLLED AZ31B MAGNESIUM ALLOY DURING CORROSION FATIGUE PROCESS[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
[5] . CORROSION FATIGUE BEHAVIOR OF 304 STAINLESS STEEL MICRO-SIZED SPECIMENS[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .
[6] ;. INFLUENCE OF COATING OF COVERING AIRPLANE ON CORROSION FATIGUE LIFE OF ALUMINIUM ALLOY LY12CZ[J]. 中国腐蚀与防护学报, 2006, 26(1): 34-36 .
[7] . Mechanisms for corrosion fatigue crack propagation[J]. 中国腐蚀与防护学报, 2004, 24(6): 321-333 .
[8] WANG Rong (Xi'an Petroleum Institute; Xi'an 710065)ZHENG Xiu-lin (Northwestern Polytechnical University; Xi'an 710072). CORROSION FATIGUE CRACK INITIATION LIFE OF AN ALUMINUM ALLOY UNDER VARIABLE AMPLITUDE LOADING[J]. 中国腐蚀与防护学报, 1998, 18(3): 178-186.
[9] WANG Rong(Xi'an Petroleum Institute; Xi'an 710061). A FRACTURE MODEL FOR CORROSION FATIGUE CRACK PROPAGATION PROCESS[J]. 中国腐蚀与防护学报, 1998, 18(2): 87-94.
[10] FU Chaoyang ZHENG Jiashen (Huazhong University of Science and Technology; Wuhan 430074). HYDROGEN PERMEATION AND CORROSION FATIGUE BEHAVIOR OF CARBON STEEL IN DRILLING FLUIDS[J]. 中国腐蚀与防护学报, 1997, 17(4): 263-268.
[11] GAO Hua CAO Weijie YING Hong(Research Institute of Energy & Environmental Engineering; Shanghai University of EngineeringScience; Sanghai 200335 China). A NEW METHOD (MST) FOR EXAMINING CORROSION FATIGUE CRACK GROWTH[J]. 中国腐蚀与防护学报, 1997, 17(3): 221-226.
[12] WEI Xuejun LI Jin KE Wei(State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; The Chinese Academy of Sciences; Shenyang 110015). SINGLE OVERLOAD RETARDATION OF A537 STEEL IN 3.5% NaCl SOLUTION UNDER CATHODIC POLARIZATION AND FREECORROSION CONDITION[J]. 中国腐蚀与防护学报, 1997, 17(2): 99-105.
[13] XIE Jianhui WU Yinshun ZHU Rizhang (Department of Surface Science & Corrosion Engineering; University of Science & Technology Beijing). EFFECT OF STRESS ON INITIATION AND PROPAGATION OF CORROSION FATIGUE CRACKS FOR TYPE 316L STAINLESS STEEL IN HANK'S PHYSIOLOGICAL SOLUTION[J]. 中国腐蚀与防护学报, 1997, 17(1): 31-35.
[14] WANG Rong (Xi'an Petroleum Institute)ZHENG Xiulin (Northwestern Polytechnical University). EFFECT OF PREQUENCY AND OVERLOADING ON CORROSION FATIGUE CRACK INITIATION LIFE[J]. 中国腐蚀与防护学报, 1996, 16(4): 256-262.
[15] WANG Zheng; WANG Zhiqi (Zhengzhou Institute of Technology)(Beijing University of Science and Technology). LIGAMENT MODEL FOR CORROSION FATIGUE CRACK PROPAGATION[J]. 中国腐蚀与防护学报, 1996, 16(3): 161-169.
No Suggested Reading articles found!