Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 478-486    DOI: 10.11902/1005.4537.2017.184
Current Issue | Archive | Adv Search |
Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution
Zhiying ZHANG(), Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Download:  HTML  PDF(5587KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Using differential scanning calorimetry (DSC) with heating rate of 10 K/min, the glass transition temperature Tg and the crystallization temperature Tx of the Cu-based bulk metallic glasses (BMGs) Cu47.5Zr47.5-xAl5Hfx (x=0, 9.5) were determined to be 712~722 K and 747~766 K, respectively. X-ray diffraction (XRD) analysis confirmed that Cu-based metallic glass or metallic glass-nanocrystalline composites could be obtained throu-gh annealing. The microstructure and microhardness were affected by the annealing temperature and time. When the annealing temperature was above Tg, with the increase of annealing temperature and time, the crystallinity and the microhardness gradually increased and then leveled off. Immersion tests and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of the as-cast and annealed samples in 3.5%NaCl solution. Pitting was observed on the Cu47.5Zr47.5-xAl5Hfx (x=0, 9.5) samples after immersion in 3.5%NaCl solution. Compared with the as-cast samples, the samples anneal-ed at 623 K (i.e. below Tg) or at 773 K (i.e. slightly above Tx) exhibited higher corrosion potential and slightly larger corrosion current density, indicating the similar corrosion resistance of them. The samples annealed at 923 K (i.e. much higher than Tx) for 30 min exhibited much lower corrosion potential and similar corrosion current density, indicating their poorer corrosion resistance. Hf content showed minor effect on the corrosion resistance.

Key words:  bulk metallic glass composite      anneal      corrosion      potentiodynamic polarization      XRD      microhardness     
Received:  09 November 2017     
ZTFLH:  TG146.4  
Fund: Supported by National Natural Science Foundation of China (51502229), Start-up Research Fund of Wuhan University of Technology (471-40120189) and Independent Innovation Research Fund of Wuhan University of Technology (2017-CL-B1-08)

Cite this article: 

Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 478-486.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.184     OR     https://www.jcscp.org/EN/Y2018/V38/I5/478

Fig.1  DSC curves of Cu47.5Zr47.5-xAl5Hfx(x=0, 9.5) during heating at 10 K/min
Cu47.5Zr47.5-xAl5Hfx Tg / K Tx / K
x=0 712 747
x=9.5 722 766
Table 1  Glass transition temperature Tg and crystalliz-ation temperature Tx determined by DSC for Cu47.5Zr47.5-xAl5Hfx(x=0, 9.5)
Fig.2  XRD patterns of Cu47.5Zr47.5-xAl5Hfx(x=9.5) samplesbefore and after annealing at 923 K for 8~30 min
Fig.3  XRD patterns of Cu47.5Zr47.5-xAl5Hfx(x=0) samples before and after annealing at different temperatures (623~923 K) for 30 min
Fig.4  XRD patterns of Cu47.5Zr47.5-xAl5Hfx(x=9.5) samples before and after annealing at different temperatures (623~923 K) for 30 min
Fig.5  Microhardness of Cu47.5Zr47.5-xAl5Hfx(x=9.5) samples annealed at 923 K for different time
Fig.6  Microhardness of Cu47.5Zr47.5-xAl5Hfx(x=0, 9.5) sam-ples annealed at different temperatures for 30 min
Fig.7  Surface optical photographs of Cu47.5Zr47.5-xAl5Hfx(x=0) (a) and Cu47.5Zr47.5-xAl5Hfx(x=9.5) (b) before immersion test
Fig.8  Surface optical photographs of Cu47.5Zr47.5-xAl5Hfx(x=0) sample after immersion in 3.5%NaCl solution for 72 h: (a) the whole surface area; (b) the upper-left area, showing severe corrosion; (c) the lower area, showing minor corrosion
Fig.9  Surface optical photographs of Cu47.5Zr47.5-xAl5Hfx(x=9.5) sample after immersion in 3.5%NaCl solution for 72 h: (a) the whole surface area, (b) the middle area, (c) the upper area
Fig.10  SEM surface images of Cu47.5Zr47.5-xAl5Hfx(x=0) sample after immersion in 3.5%NaCl solution for 120 h: (a) general area, (b) severe corrosion area, (c, d) the area covered by wire-like corrosion products
Fig.11  SEM surface images of Cu47.5Zr47.5-xAl5Hfx(x=9.5) sample after immersion in 3.5%NaCl solution for 120 h: (a) the middle area, (b~d) the area covered with corrosion products
Fig.12  Potentiodynamic polarization curves of as-cast and 923 K annealed Cu47.5Zr47.5-xAl5Hfx(x=0) samples in 3.5%NaCl solution
Fig.13  Potentiodynamic polarization curves of as-cast and 623~923 K annealed Cu47.5Zr47.5-xAl5Hfx(x=9.5) sam-ples in 3.5%NaCl solution
Fig.14  Potentiodynamic polarization curves of as-cast and 923 K annealed Cu47.5Zr47.5-xAl5Hfx(x=0, 9.5) samples in 3.5%NaCl solution
Site Al Cu Zr Cl O
No.1 0.55 59.50 12.23 --- Bal.
No.2 1.51 48.79 18.09 0.65 Bal.
No.3 1.99 15.60 15.67 3.75 Bal.
No.4 1.84 21.68 14.08 0.98 Bal.
No.5 3.12 47.07 13.99 1.58 Bal.
No.6 3.79 31.54 32.54 --- Bal.
No.7 2.62 22.26 18.48 5.22 Bal.
No.8 1.99 13.43 14.41 5.28 Bal.
Table 2  EDS analysis results of Cu47.5Zr47.5-xAl5Hfx(x=0) sample after immersion in 3.5%NaCl solution for 120 h
Site Al Cu Zr Hf Cl O
No.1 10.22 24.50 20.24 4.79 --- Bal.
No.2 1.27 17.14 15.64 3.43 0.96 Bal.
No.3 1.87 11.86 10.58 2.19 3.42 Bal.
No.4 1.80 12.30 16.47 3.53 4.00 Bal.
No.5 1.13 29.29 11.57 2.73 0.56 Bal.
No.6 4.70 33.38 28.27 6.90 --- Bal.
No.7 2.29 14.08 15.39 3.67 0.55 Bal.
No.8 2.52 13.09 12.77 2.90 0.70 Bal.
No.9 2.41 19.96 15.82 3.89 1.43 Bal.
Table 3  EDS analysis results of Cu47.5Zr47.5-xAl5Hfx(x=9.5)sample after immersion in 3.5%NaCl solution for 120 h
Cu47.5Zr47.5-xAl5Hfx Annealing temperature / K EcorrV (vs SCE) IcorrAcm-2
x=0 293 0.104 5.169×10-5
923 -0.279 5.125×10-5
x=9.5 293 0.169 2.327×10-5
623 0.240 2.590×10-4
773 0.195 8.792×10-5
923 -0.262 7.435×10-5
Table 4  Corrosion potential Ecorr and corrosion current density Icorr determined by potentiodynamic polarization tests in 3.5%NaCl solution for as-cast and annealed Cu47.5Zr47.5-xAl5Hfx(x=0, 9.5) samples
[1] Wang W H.The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Prog. Mater. Sci., 2012, 57: 487
[2] Greer A L, Cheng Y Q, Ma E.Shear bands in metallic glasses[J]. Mater. Sci. Eng., 2013, R74: 71
[3] Wang J Q.Chemical functional applications and fundamental researches of metallic glasses[J]. Mater. China, 2014, 33: 270(王军强. 金属玻璃的功能性应用及相关基础研究[J]. 中国材料进展, 2014, 33: 270)
[4] Li H F, Zheng Y F.Recent advances in bulk metallic glasses for biomedical applications[J]. Acta Biomater., 2016, 36: 1
[5] Kim D H, Kim W T, Park E S, et al.Phase separation in metallic glasses[J]. Prog. Mater. Sci., 2013, 58: 1103
[6] Qiao J W, Jia H L, Liaw P K.Metallic glass matrix composites[J]. Mater. Sci. Eng., 2016, R100: 1
[7] Chen S S, Zhang H R,Todd I.Phase-separation-enhanced plasticity in a Cu47.2Zr46.5Al5.5Nb0.8 bulk metallic glass[J]. Scr. Mater., 2014, 72/73: 47
[8] Wei R, Yang S, Chang Y, et al.Mechanical property degradation of a CuZr-based bulk metallic glass composite induced by sub-Tg annealing[J]. Mater. Des., 2014, 56: 128
[9] Wu J L, Li W H, Pan Y, et al.Microalloying and microstructures of Cu-based bulk metallic glasses & composites and relevant mechanical properties[J]. Mater. Des., 2016, 89: 1130
[10] Vincent S, Daiwile A, Devi S S, et al.Bio-corrosion and cytotoxicity studies on novel Zr55Co30Ti15 and Cu60Zr20Ti20 metallic glasses[J]. Metall. Mater. Trans., 2015, 46A: 2422
[11] Lin H M, Wu J K, Wang C C, et al.The corrosion behavior of mechanically alloyed Cu-Zr-Ti bulk metallic glasses[J]. Mater. Lett., 2008, 62: 2995
[12] Lee P Y, Cheng Y M, Chen J Y, et al.Formation and corrosion behavior of mechanically-alloyed Cu-Zr-Ti bulk Metallic glasses[J]. Metals, 2017, 7: 148
[13] Cai A H, Xiong X, Liu Y, et al.Corrosion behavior of Cu55Zr35Ti10 metallic glass in the chloride media[J]. Mater. Chem. Phys., 2012, 134: 938
[14] Cai A H, Ding D W, Xiong X, et al.Effect of mechanical tension on corrosive and thermal properties of Cu50Zr40Ti10 metallic glass[J]. Mater. Sci. Eng., 2013, A588: 49
[15] Baca N, Conner R D, Garrett S J.Corrosion behavior of oxide-covered Cu47Ti34Zr11Ni8 (Vitreloy 101) in chloride-containing solutions[J]. Mater. Sci. Eng., 2014, B184: 105
[16] Wu J L, Li X Z, Cao H B, et al.Ultraviolet light irradiation on pitting corrosion of Cu-based bulk metallic glasses[J]. J. Alloys Compd., 2016, 661: 345
[17] Liu B, Liu L, Sun M, et al.Influence of Cr micro-addition on the glass forming ability and corrosion resistance of Cu-based bulk metallic glasses[J]. Acta Metall. Sin., 2005, 41: 738(刘兵, 柳林, 孙民等. 微量Cr对Cu基块体非晶合金的形成能力及耐蚀性能的影响[J]. 金属学报, 2005, 41: 738)
[18] Kou S Z, Zhang L, Lei J J, et al.Influence of Ni micro-addition on glass forming ability, thermal stability and corrosion-resistant performance of Cu50Zr42Al8 metallic glass[J]. Hot Work. Technol., 2007, 36(24): 1(寇生中, 张玲, 雷继军等. 微量组分Ni对Cu50Zr42Al8块状非晶的玻璃形成能力、热稳定性及耐腐蚀性能的影响[J]. 热加工工艺, 2007, 36(24): 1)
[19] Liu B, Liu L.Effect of micro Mo addition on anticorrosion ability of Cu base bulk metallic glass[J]. Acta Metall. Sin., 2007, 43: 82(刘兵, 柳林. 添加微量Mo对铜基块体非晶合金耐蚀性的影响[J]. 金属学报, 2007, 43: 82)
[20] Chen D, Dong J F, Cheng Y L, et al. Synthesis and corrosion behavior of Cu-Zr-Al-Ti bulk amorphous alloy[J]. Mater. Rev., 2012,26(5)B: 1(陈鼎, 董建峰, 程英亮等.Cu-Zr-Al-Ti块体非晶合金的制备及腐蚀行为研究 [J]. 材料导报, 2012, 26(5)B:1)
[21] Wang Z M, Chang X C, Lou W L, et al.Selective dissolution sensitive to minor alloying in CuZr-based metallic glasses[J]. Corros. Sci., 2013, 76: 465
[22] Pi J H, Pan Y, Wu J L, et al.Influence of minor addition of In on corrosion resistance of Cu-based bulk metallic glasses in 3.5%NaCl solution[J]. Rare Met. Mater. Eng., 2014, 43: 32
[23] Zhang C Z, Wang J H, Qiu N N, et al.Cerium addition on pitting corrosion of (Cu50Zr50)100-2xCe2x(x=0, 1, 2 and 3) metallic glasses in seawater[J]. J. Rare Earths, 2015, 33: 102
[24] Zhang C Z, Qiu N N, Kong L L, et al.Thermodynamic and structural basis for electrochemical response of Cu-Zr based metallic glass[J]. J. Alloys Compd., 2015, 645: 487
[25] Zhang W, Qin C L, Zhang X G, et al. Effects of additional noble elements on the thermal stability and mechanical properties of Cu-Zr-Al bulk glassy alloys [J]. Mater. Sci. Eng., 2007,A449-451: 631
[26] Chen S F, Lin S L, Chen J K, et al.Thermal stability and corrosion behavior of Cu-Zr-Al-Y bulk metallic glass[J]. Intermetallics, 2010, 18: 1954
[27] Chen L Y, Xue Z, Xu Z J, et al.Cu-Zr-Al-Ti bulk metallic glass with enhanced glass-forming ability, mechanical properties, corrosion resistance and biocompatibility[J]. Adv. Eng. Mater., 2012, 14: 195
[28] Li X, Lv F, Geng Y X, et al.Preparation and corrosion property of (Cu50Zr50)(100-x)Ndx amorphous alloy[J]. Int. J. Electrochem. Sci., 2017, 12: 726
[29] Chen P, Qin F X, Zhang H F, et al.Corrosion behaviors of bulk amorphous alloy Cu-Zr-Ti-Sn and its crystallized form in 3.5% NaCl solution[J]. Acta Metall. Sin., 2004, 40: 207(陈鹏, 秦凤香, 张海峰等. 块状非晶合金Cu-Zr-Ti-Sn在3.5%NaCl溶液中的腐蚀行为[J]. 金属学报, 2004, 40: 207)
[30] Tam M K, Shek C H.Crystallization and corrosion resistance of Cu50Zr45Al5 bulk amorphous alloy[J]. Mater. Chem. Phys., 2006, 100: 34
[31] Gu Y D, Zheng Z, Niu S Z, et al.The seawater corrosion resistance and mechanical properties of Cu47.5Zr47.5Al5 bulk metallic glass and its composites[J]. J. Non Cryst. Solids, 2013, 380: 135
[32] Chen L, Li X.Electrochemical corrosion properties of Cu72Sn10 P10Ni8 amorphous ribbon[J]. Mater. Mech. Eng., 2015, 39(9): 53(陈琳, 李翔. Cu72Sn10P10Ni8非晶薄带的电化学腐蚀性能[J]. 机械工程材料, 2015, 39(9): 53)
[33] Qiao D C, Fan G J, Liaw P K, et al.Fatigue behaviors of the Cu47.5Zr47.5Al5 bulk-metallic glass (BMG) and Cu47.5Zr38Hf9.5Al5 BMG composite[J]. Int. J. Fatigue, 2007, 29: 2149
[34] Lide D R.CRC Handbook of Chemistry and Physics [M]. 90th Ed., Boca Raton: CRC Press, 2009
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!