Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 471-477    DOI: 10.11902/1005.4537.2017.202
Current Issue | Archive | Adv Search |
Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field
Yang LI, Chengyuan LI, Xu CHEN(), Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(923KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion rate of super 13Cr stainless steel was measured by potentiodynamic polarization curves in different environments of marine oil and gas field. Then the relationship between the corrosion behavior of super 13Cr stainless steel with the concentration of Cl-, concentration of S2-, pH value and temperature was evaluated by means of grey relationship analysis. Results showed that the grey correlation degree of corrosion factors in the marine oil and gas environments could be ranked with a descending sequence as follows: concentration of Cl- (0.8223)>temperature (0.7704)>pH value (0.7646)>concentration of S2- (0.7595). The weight of the effect of each corrosion factor on the corrosion rate of super 13Cr stainless steel was analyzed by hierarchy process, which then could be ranked with a descending sequence as follows: concentration of Cl- (0.3905)>temperature (0.2761)>pH value (0.1953)>concentration of S2- (0.1381). The main factors of the marine oil and gas environment, which caused the corrosion failure of super 13Cr stainless steel, were the high concentration of Cl- and high temperature.

Key words:  marine oil and gas environment      super 13Cr stainless steel      corrosion rate      grayrelationship analysis     
Received:  27 November 2017     
ZTFLH:  TG142.71  
Fund: Supported by National Natural Science Foundation of China (51574147) and Education Fund Item of Liaoning Province (L2017LZD004)

Cite this article: 

Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 471-477.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.202     OR     https://www.jcscp.org/EN/Y2018/V38/I5/471

Fig.1  Polarization curves of super 13Cr stainless steel in the solutions with the different values of Cl- concentration (a), S2- concentration (b), pH (c) and temperature (d)
Cl- concentration / molL-1 S2- concentration / molL-1 Temperature / ℃ pH value Icorr / μAcm-2 VL / mma-1
0.1 0 25 7 0.019 0.021
0.25 0 25 7 0.117 0.142
0.6 0 25 7 0.475 0.561
0.85 0 25 7 4.624 5.456
1.4 0 25 7 5.875 6.932
1.7 0 25 7 14.453 17.06
0 0.001 25 7 0.0018 0.002
0 0.005 25 7 0.0061 0.007
0 0.01 25 7 0.0316 0.037
0 0.05 25 7 0.3752 0.443
0 0.1 25 7 0.0296 0.035
0 0.15 25 7 0.0154 0.018
0.6 0 25 3 0.584 0.694
0.6 0 25 5 0.481 0.568
0.6 0 25 7 0.475 0.560
0.6 0 25 9 0.015 0.017
0.6 0 25 11 0.012 0.014
0.6 0 25 13 0.010 0.013
0.6 0 25 7 0.475 0.561
0.6 0 35 7 0.496 0.589
0.6 0 50 7 0.512 0.604
0.6 0 60 7 0.534 0.630
0.6 0 70 7 1.633 1.927
0.6 0 80 7 2.875 3.392
Table 1  Fitting data of the polarization curves of super 13Cr in different environment conditions
Corrosion factors Yi Y0
Cl- concentration S2- concentration Temperature pH value Corrosion rate
0.1983 0 0.7792 0.9655 0.0125
0.4959 0 0.7792 0.9655 0.0846
1.1901 0 0.7792 0.9655 0.3342
1.686 0 0.7792 0.9655 3.2506
2.7769 0 0.7792 0.9655 4.13
3.3719 0 0.7792 0.9655 10.1641
0 0.0759 0.7792 0.9655 0.0012
0 0.3797 0.7792 0.9655 0.0042
0 0.7595 0.7792 0.9655 0.022
0 3.7975 0.7792 0.9655 0.2639
0 7.5949 0.7792 0.9655 0.0209
0 11.3924 0.7792 0.9655 0.0107
1.1901 0 0.7792 0.4138 0.4135
1.1901 0 0.7792 0.6879 0.3384
1.1901 0 0.7792 0.9655 0.3336
1.1901 0 0.7792 1.2414 0.0101
1.1901 0 0.7792 1.5172 0.0083
1.1901 0 0.7792 1.7931 0.0077
1.1901 0 0.7792 0.9655 0.3342
1.1901 0 1.0909 0.9655 0.3509
1.1901 0 1.5584 0.9655 0.3599
1.1901 0 1.8701 0.9655 0.3753
1.1901 0 2.1818 0.9655 1.1481
1.1901 0 2.4935 0.9655 2.0209
Table 2  Equalization treatment results
[1] Wang F, Wei C Y, Huang T J, et al.Effect of H2S partial pressure on stress corrosion cracking behavior of 13Cr stainless steel in annulus environment around CO2 injection well[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 46(王峰, 韦春艳, 黄天杰等. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34: 46)
[2] Li Z L, Cheng Y P, Bi H S, et al.Research progress of CO2/H2S corrosion and inhibitor techniques in oil and gas fields[J]. CIESC J., 2014, 65: 406(李自力, 程远鹏, 毕海胜等. 油气田CO2/H2S共存腐蚀与缓蚀技术研究进展[J]. 化工学报, 2014, 65: 406
[3] Zhao Y F, Wang J L, Zuo Y, et al.Research development of corrosion of steels in CO2/H2S-containing media in oil & gas fields[J]. Corros. Prot. Petrochem. Ind., 2010, 27: 1(赵永峰, 王吉连, 左禹等. 在含CO2/H2S介质中油气田用钢的腐蚀研究进展[J]. 石油化工腐蚀与防护, 2010, 27: 1)
[4] Xu C M.Study on localized corrosion characteristics and mechanisms for typical petrochemical equipments [D]. Xi'an: Xi'an Jiaotong University, 2007(胥聪敏. 典型石化设备局部腐蚀特征及腐蚀机理研究 [D]. 西安: 西安交通大学, 2007)
[5] Li X Y, Fan C H, Wu Q L, et al.Effect of chloride and temperature on corrosion behavior of PH13-8Mo in acidic environments[J]. Mater. Sci. Technol., 2017, 25(6): 89(李雪莹, 范春华, 吴钱林等. 酸性溶液中Cl-含量和温度对PH13-8Mo腐蚀行为的影响[J]. 材料科学与工艺, 2017, 25(6): 89)
[6] Lv X H, Zhao G X, Zhang J B, et al.Corrosion behaviors of super 13Cr martensitic stainless steel under CO2 and H2S/CO2 environment[J]. J. Univ. Sci. Technol. Beijing, 2010, 32: 207(吕祥鸿, 赵国仙, 张建兵等. 超级13Cr马氏体不锈钢在CO2及H2S/CO2环境中的腐蚀行为[J]. 北京科技大学学报, 2010, 32: 207)
[7] Lin G F, Song W L, Wang Y M, et al.Comparative study on the corrosion performance of two kinds of HP13Cr110 Steel[J]. Equip. Environ. Eng., 2010, 7(6): 183(林冠发, 宋文磊, 王咏梅等. 两种HP13Cr110钢腐蚀性能对比研究[J]. 装备环境工程, 2010, 7(6): 183)
[8] Yin Z F, Zhao W Z, Tian W, et al.Pitting behavior on super 13Cr stainless steel in 3.5%NaCl solution in the presence of acetic acid[J]. J. Solid State Electrochem., 2009, 13: 1291
[9] Zhu X R, Zhang Q F.Grey relationship analysis for main environment factors of steel corrosion in sea water[J]. Mar. Sci., 2000, 34(5): 37(朱相荣, 张启富. 海水中钢铁腐蚀与环境因素的灰关联分析[J]. 海洋科学, 2000, 34(5): 37)
[10] Qu C T, Lu H X, Bu S F.Gray relational analysis for main factors of corrosion in Wen-1 sewage treatment plant[J]. Corros. Sci. Prot. Technol., 2005, 17: 198(屈撑囤, 卢会霞, 卜绍峰. 灰关联分析法研究中原油田文一污水的腐蚀因素[J]. 腐蚀科学与防护技术, 2005, 17: 198)
[11] Kou J, Liang F C, Chen J.Corrosion and Protection of Oil and Gas Pipelines [M]. Beijing: SINOPEC Group Press, 2008: 12(寇杰, 梁法春, 陈婧. 油气管道腐蚀与防护 [M]. 北京: 中国石化出版社, 2008: 12)
[12] Yan Y.Research and application of clustering method based on grey incidence analysis [D]. Chongqing: Chongqing University of Posts and Telecommunications, 2016(闫一. 基于灰关联分析的聚类方法研究及应用 [D]. 重庆: 重庆邮电大学, 2016)
[13] Liang P, Du C W, Li X G, et al.Grey relational space analysis of effect of environmental factors on corrosion resistance of X70 pipeline steel in Yingtan soil simulated solution[J]. Corros. Prot., 2009, 30: 231(梁平, 杜翠薇, 李晓刚等. X70管线钢在鹰潭土壤模拟溶液中腐蚀因素灰关联分析[J]. 腐蚀与防护, 2009, 30: 231)
[14] Zhang Y F, Chen X, He C, et al.Gray relationship analysis methods for effect of crude oil properties on corrosion behavior of 16Mn steel[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 43(张艳飞, 陈旭, 何川等. 原油性质对16Mn钢腐蚀行为影响灰关联分析[J]. 中国腐蚀与防护学报, 2015, 35: 43)
[15] Zhu M, Yu Y, Zhang H H.Corrosion behavior of L245 steel in simulated oilfield produced water at different temperatures[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 300(朱明, 余勇, 张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37: 300)
[16] Liu R K, Li J K, Liu Z Y, et al.Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel[J]. Int. J. Mater. Res., 2015, 106: 608
[17] Shi Y J, Shao C Y, Li Y Y, et al.Effect of temperature on corrosion behavior of steels in high sulfur and high acid crude oil[J]. Hot Work. Technol., 2014, 43(2): 16(施宜君, 邵春宇, 李莹莹等. 温度对钢材在高硫高酸值原油中腐蚀行为的影响[J]. 热加工工艺, 2014, 43(2): 16)
[18] Li Y F, Tao C C, Lin C Y, et al.Application of improved analytic hierarchy process in corrosion rate forecasting of water supplying pipe[J]. J. Shenyang Jianzhu Univ.(Nat. Sci.), 2010, 26: 729(李亚峰, 陶翠翠, 林长宇等. 改进层次分析法在给水管道腐蚀速率预测中的应用[J]. 沈阳建筑大学学报(自然科学版), 2010, 26: 729)
[1] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[3] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[4] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[5] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[6] Ming ZHU,Yong YU,Huihui ZHANG. Corrosion Behavior of L245 Steel in Simulated Oilfield Produced Water at Different Temperatures[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[7] Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[8] Qiang BAI,Yan ZOU,Xiangfeng KONG,Yang GAO,Yan LIU,Sheng DONG. Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[9] Chunxia WANG,Jingping CHEN,Xiaohong ZHANG,Chengyin WANG. Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[10] Yucheng ZHANG,Xinhua JU,Xiaolu PANG,Kewei GAO. Effect of O2 Concentration on Corrosion Rate of Steels in Supercritical CO2[J]. 中国腐蚀与防护学报, 2015, 35(3): 220-226.
[11] ZHOU Nianguang, ZHA Fanglin, FENG Bing, HE Tiexiang. Application of Electrochemical Frequency Modulation for Study of Q235 Steel Corrosion in NaCl Solution[J]. 中国腐蚀与防护学报, 2014, 34(5): 445-450.
[12] LIU Zhiyong, JIA Jinghuan, DU Cuiwei, LI Xiaogang, WANG Liying. Corrosion Behavior of X80 and X52 Steels in Simulated Seawater Environments[J]. 中国腐蚀与防护学报, 2014, 34(4): 327-332.
[13] ZHU Min, DU Cuiwei, LI Xiaogang, LIU Zhiyong, WANG Liye. Effects of Alternating Current (AC) Frequency on Corrosion Behavior of X80 Pipeline Steel in a Simulated Acid Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(3): 225-230.
[14] ZHOU Jing, FENG Zhiyong, ZHANG Jinling, WANG Shebin. Effect of Nd Addition on Corrosion Resistance of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2014, 34(2): 185-191.
[15] PENG Xin,WANG Jia,,WANG Jinlong,SHAN Chuan,JIA Honggang,
LIU Zaijian,WANG Haijie. Corrosion Electrochemical Parameters Test of Rusted Carbon Steel in Seawater[J]. 中国腐蚀与防护学报, 2013, 33(6): 449-454.
No Suggested Reading articles found!