Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 431-437    DOI: 10.11902/1005.4537.2017.153
Current Issue | Archive | Adv Search |
Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years
Li WANG1, Chunyun GUO2, Kui XIAO1, Tuerxun·Silayiding2, Chaofang DONG1, Xiaogang LI1
1 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Xinjiang Turpan Natural Environmental Test Research Center, Turpan 838200, China
Download:  HTML  PDF(3568KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atmospheric exposure of carbon steels Q235 and Q450 were conducted for 4 a in dry hot atmospheric environment at Turpan district of Xinjiang Uygur Autonomous Region. The results showed that the surface of the two steels presented obvious corrosion products scale. The average corrosion rate of Q450 and Q235 was 12 and 14 g·m-2·a-1 respectively. Thus, Q450 steel exhibits corrosion rate lower than Q235 steel, and while the corresponding corrosion pits were relatively shallow. The corrosion products of the two steels composed mainly of α-FeOOH, γ-FeOOH and Fe2O3·H2O, while the proportion of α-FeOOH for Q450 was higher than that for Q235. The corrosion products on Q450 were relatively dense. Thereby, it hindered the absorption of water and sediment, leading to the decrease of corrosion rate. The result of EIS demonstrated that the resistance of corrosion products and surface charge transfer of Q450 was greater than that of Q235, i.e. the corrosion products of Q450 had better protectiveness.

Key words:  carbon steel      Turpan      atmospheric corrosion     
Received:  20 September 2017     
ZTFLH:  TG172  
Fund: Supported by National Key Research and Development Program of China (2017YFB0702300), National NaturalScience Foundation of China (51671029) and Fundamental Research Funds for the Central Unive-rsities (FRF-TP-17-002B)

Cite this article: 

Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 431-437.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.153     OR     https://www.jcscp.org/EN/Y2018/V38/I5/431

Steel C Si Mn S P Cu Ni Cr Fe
Q235 0.14 0.13 0.44 0.031 0.015 --- --- --- Bal.
Q450 0.067 0.19 1.36 0.004 0.017 0.36 0.19 0.57 Bal.
Table 1  Chemical compositions of Q235 and Q450 steels(mass fraction / %)
Date Average temperature / ℃ Average highest temperature / ℃ Average lowest temperature / ℃ Precipitation
mm
Average relative humidity / % Average wind speed / ms-1
2012.07 35.8 39.8 30.4 0 21 3.4
2012.08 33.8 39.2 28.4 0 14 3.7
2012.09 27.1 32.8 21.5 0 20 2.2
2012.10 16.3 25.2 11.2 0 26 2.4
2012.11 1.6 6.2 -2.1 0 30.1 2.5
2012.12 -6.7 -2.6 -9.9 0 59.3 1.5
2013.01 -12.6 -7.2 -16.4 0 80.0 1.0
2013.02 1.5 6.0 -2.9 0 42.8 2
2013.03 16.4 20.6 7.7 0 17.4 2.1
2013.04 23.0 27.0 14.1 0.02 15.1 2.6
2013.05 28.9 32.0 20.9 0 14.1 3.3
2013.06 33.2 37.7 28.6 0 18.3 4.1
Table 2  Average weather date of Turpan atmospheric exposure station in the period of 2012.07~2013.07[5]
Fig.1  Maco morphologies of Q235 (a) and Q450 (b) steels after exposure in atmospheric enviroment in Turpan area for 4 a
Fig.2  Surface morphologies of Q235 (a) and Q450 (b) steels after exposure in atmospheric enviroment in Turpan area for 4 a
Fig.3  Corrosion rates of Q235 and Q450 steels exposed in Turpan area for different time
Fig.4  Corrosion pit depth distributions of Q235 (a) and Q450 (b) steels after exposure in atmospheric enviroment in Turpan area for 4 a
Fig.5  Corrosion pit depths of Q235 and Q450 steels after exposure in atmospheric enviroment in Turpan area for 4 a
Fig.6  Section morphology and EDS result of the corrosion products of Q235 steel after exposure in atmospheric enviroment in Turpan area for 4 a
Fig.7  Section morphology and EDS result of the corrosion products of Q450 steel after exposure in atmospheric enviroment in Turpan area for 4 a
Fig.8  XRD patterns of the corrosion products formed on Q235 and Q450 steels after exposure for 4 a in Turpan atmospheric environment
Fig.9  EIS result of Q235 and Q450 steels after exposure in atmospheric enviroment in Turpan area for 4 a
Fig.10  Electrochemical equivalent circuit of EIS
Steel RfΩcm2 CPEfμFcm-2 RtΩcm2 CPEdlμFcm-2 WΩcm2
Q235 121.2 4.0×10-3 142.2 2.579×10-6 0.019
Q450 2570.0 5.6×10-3 322.2 8.530×10-6 0.014
Table 3  Fitting values of various parameters based on EIS
[1] Xiao Y D, Wang G Y, Li X G.The corrosive characteristics of atmospheric environment and materials in Western China[J]. J. Chin. Soc. Corros. Prot., 2003, 23: 57(萧以德, 王光雍, 李晓刚. 我国西部地区大气环境腐蚀性及材料腐蚀特征[J]. 中国腐蚀与防护学报, 2003, 23: 57)
[2] Li H Y, Fang Y H, Xiao K, et al.Corrosion behavior of carbon steels in hot and dry atmosphere environment at Turpan area[J]. Corros. Sci. Prot. Technol., 2014, 26: 407(李慧艳, 方月华, 肖葵等. 碳钢在吐鲁番干热大气环境中的腐蚀行为[J]. 腐蚀科学与防护技术, 2014, 26: 407)
[3] Liang C F, Hou W T.Atmospheric corrosivity for steels[J]. J. Chin. Soc. Corros. Prot., 1998, 18(1): 3(梁彩凤, 侯文泰. 环境因素对钢的大气腐蚀的影响[J]. 中国腐蚀与防护学报, 1998, 18(1): 3)
[4] Luo H, Li X G, Xiao K, et al.Corrosion behavior of 304 stainless steel in the marine atmospheric environment of Xisha islands[J]. J. Univ. Sci. Technol. Beijing, 2013, 35: 332(骆鸿, 李晓刚, 肖葵等. 304不锈钢在西沙海洋大气环境中的腐蚀行为[J]. 北京科技大学学报, 2013, 35: 332)
[5] Saha D, Pandya A, Singh J K, et al.Role of environmental particulate matters on corrosion of copper[J]. Atmos. Pollut. Res., 2016, 7: 1037
[6] Hao X C, Li X G, Xiao K, et al.Characterization of rust layers formed on Q235 steel exposed to atmosphere in Xisha islands[J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 1239(郝献超, 李晓刚, 肖葵等. Q235碳钢在西沙大气暴晒的锈层特征[J]. 北京科技大学学报, 2009, 31: 1239)
[7] Li D L, Fu G Q, Zhu M Y, et al.Effect of SO2 pollution on corrosion behavior of Q235B steel in hot and humid marine atmosphere[J]. Iron Steel, 2017, 52(1): 64(李东亮, 付贵勤, 朱苗勇等. 湿热海洋大气中SO2污染对Q235B钢腐蚀行为的影响[J]. 钢铁, 2017, 52(1): 64)
[8] Wang C, Cao G W, Pan C, et al.Atmospheric corrosion of carbon steel and weathering steel in three environments[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39(汪川, 曹公旺, 潘辰等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究[J]. 中国腐蚀与防护学报, 2016, 36: 39)
[9] Qiang Y U, Dong C F, Fang Y H, et al.Atmospheric corrosion of Q235 carbon steel and Q450 weathering steel in Turpan, China[J]. J. Iron Steel Res. Int., 2016, 23: 1061
[10] Yamashita M, Nagano H, Misawa T, et al.Structure of protective rust layers formed on weathering steels by long-term exposure in the industrial atmospheres of Japan and north America[J]. ISIJ Int., 1998, 38: 285
[11] Cheng X Q, Jin Z, Liu M, et al.Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres[J]. Corros. Sci., 2017, 115: 135
[12] Kong D C, Dong C F, Fang Y H, et al.Copper corrosion in hot and dry atmosphere environment in Turpan, China[J]. Trans. Chin. J. Nonferrous Met., 2016, 26: 1721
[13] Li Q X, Wang Z Y, Han W, et al.Review on atmospheric corrosion of weathering and carbon steels[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 394(李巧霞, 王振尧, 韩薇等. 碳钢和耐候钢的大气腐蚀[J]. 中国腐蚀与防护学报, 2009, 29: 394)
[14] Xiao K, Dong C F, Li X G, et al.Atmospheric corrosion behavior of weathering steels in initial stage[J]. J. Iron Steel Res., 2008, 20: 53(肖葵, 董超芳, 李晓刚等. 大气腐蚀下耐候钢的初期行为规律[J]. 钢铁研究学报, 2008, 20: 53)
[15] Ma Y T, Li Y, Wang F H.The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112: 844
[16] Kamimura T, Stratmann M.The influence of chromium on the atmospheric corrosion of steel[J]. Corros. Sci., 2001, 43: 429
[17] Li H Y, Fang Y H, Xiao K, et al.Corrosion behavior of 7A04 and 2A12 aluminum alloy in hot and dry atmosphere environment in Turpan[J]. Corros. Prot., 2014, 35: 1098(李慧艳, 方月华, 肖葵等. 7A04和2A12铝合金在吐鲁番干热大气环境中的腐蚀行为[J]. 腐蚀与防护, 2014, 35: 1098)
[1] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[3] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[4] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[6] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[7] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[8] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[9] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[10] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[11] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[12] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[13] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[14] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[15] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
No Suggested Reading articles found!