Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 317-325    DOI: 10.11902/1005.4537.2017.120
Current Issue | Archive | Adv Search |
Research Progress of Pitting Corrosion of Magnesium Alloys
Zhimin FAN1, Jin YU1, Yingwei SONG2(), Dayong SHAN2, En-Hou HAN2
1 School of Science, Shenyang University of Technology, Shenyang 110870, China
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(9849KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium alloys, as the lightest structural metallic material, have great potential for applications in transportation、electronic and aerospace industries. However, the poor corrosion resistance extremely limits their utilization. Pitting corrosion is the most common localized corrosion form, which is a kind of hidden danger and frequently causes damage to structural parts of Mg-alloys. The effect of corrosive environment and microstructure of alloys on the initiation and propagation of pitting corrosion are summarized based on the recent research progress at home and abroad while the in situ techniques of micro area measurement for pitting corrosion research are introduced. It follows that the combination of in situ techniques and traditional corrosion research methods is the most efficient approach to reveal the pitting corrosion behavior of Mg-alloys. Meantime, the possible methods for declining the pitting corrosion of Mg-alloys are suggested. Eventually, the research focus of pitting corrosion of Mg-alloys in the future is analyzed and forecasted, expecting to give some advices to improve the pitting corrosion-resistant of Mg-alloys.

Key words:  pitting corrosion      magnesium alloy      corrosion environment      microstructure      in situ local technique     
Received:  23 July 2017     
ZTFLH:  TG174  
Fund: Supported by National Natural Science Foundation of China (51471174) and National Key Research and Development Program of China (2016 YFB0301105)

Cite this article: 

Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 317-325.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.120     OR     https://www.jcscp.org/EN/Y2018/V38/I4/317

Fig.1  Model of pitting corrosion for AM60 Mg alloy[14]
Fig.2  Optical micro-photo (a) and distribution of local ionic current density (b) of AZ31B alloy after immersed in 0.05 mol/L NaCl solution for 4 h[16]
Fig.3  Optical micrograph of the cross section of ZE41A-T5 after immersion in 0.001 mol/L NaCl solution for 18 h[23]
Fig.4  SEM images of AM30 magnesium alloy after salt spray (a, b) and immersion (c, d) tests for 60 h, showing surface corrosion pits with different sizes[26]
Fig.5  Corrosion morphologies of Mg-3Zn alloy after immersion in 0.01 mol/L NaCl+0.01 mol/L Na2SO4 solution for 6 h (a), 0.01 mol/L NaCl+0.05 mol/L Na2SO4 solution for 12 h (b) and 0.01 mol/L NaCl+0.1 mol/L Na2SO4 solution for 16 h (c), respectively[28]
Fig.6  Influences of chloride ion concentration (a) and pH (b) on the electrochemical corrosion of AZ63 Mg alloy immersed in NaCl solutions[31]
Fig.7  Corrosion morphology of Mg-Zn-Y-Zr alloy after immersed in 0.1 mol/L NaCl solution for 10 min (a) and the magnified image of the area I in Fig.7a (b)[34]
Fig.8  Secondary electron image (a) and back scattered electron image (b) of the sueface of Mg-Zn-Y-Zr alloy after immersed in 0.1 mol/L NaCl solution for 24 h[34]
Fig.9  SEM corrosion morphology of GW93 cast Mg alloy after immersion in 3.5%NaCl solution for 48 h and then removing corrosion products (a) and the magnified image of area I in Fig.9a (b)[43]
Fig.10  Cross sections of EW75 alloy after immersion in 3.5%NaCl solution for 30 min (a), and for 2 h and then removing corrosion products (b)[44]
Fig.11  Surface corrosion morphologies of AM60 alloys with different Nd contents of 0 (a), 0.289% (b), 0.594% (c), 0.899% (d) and 1.186% (e) after immersion in 3.5%NaCl solution for 48 h[48]
Fig.12  SEM micrographs of as-cast Mg-4Zn alloy after immersed in 3.5%NaCl solution for 4?h (a), 12?h (b), 24?h (c) and 48?h (d)[49]
Fig.13  SEM micrographs of solid-solution Mg-4Zn alloy after immersed in 3.5%NaCl solution for 4?h (a), 12?h (b), 24?h (c) and 48?h (d)[49]
Fig.14  Optical images of the MAO film with self-sealing holes before (a) and after (b) immersion in 3.5% NaCl solution for 330 h[54]
[1] Hu H, Yu A, Li N Y, et al.Potential magnesium alloys for high temperature die cast automotive applications: A review[J]. Mater. Manuf. Process., 2003, 18: 687
[2] Zhao Y, Dong G, Zhao B.Research progress of magnesium alloy application in aviation manufacturing[J]. Nonferrous Met. Eng., 2015, 5(2): 23(赵怿, 董刚, 赵博. 镁合金在航空领域应用的研究进展[J]. 有色金属工程, 2015, 5(2): 23)
[3] Zhang J, Zong Y, Fu P H, et al.Application and development prospect of magnesium alloys as biomedical materials[J]. J. Clin. Rehabilit. Tissue. Eng. Res., 2009, 13: 5747(张佳, 宗阳, 付彭怀等. 镁合金在生物医用材料领域的应用及发展前景[J]. 中国组织工程研究与临床康复, 2009, 13: 5747)
[4] Kulekci M K.Magnesium and its alloys applications in automotive industry[J]. Int. J. Adv. Manuf. Technol., 2008, 39: 851
[5] Zhai C Q, Zeng X Q, Ding W J, et al.Development and application of magnesium alloys in China[J]. Mater. Mech. Eng., 2001, 25(1): 6(翟春泉, 曾小勤, 丁文江等. 镁合金的开发与应用[J]. 机械工程材料, 2001, 25(1): 6)
[6] Liang J, Guo B G, Tian J, et al.Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy[J]. Appl. Surf. Sci., 2005, 252: 345
[7] Lunder O, Lein J E, Hesjevik S M, et al.Corrosion morphologies on magnesium alloy AZ91[J]. Mater. Corros., 1994, 45: 331
[8] Williams G, Grace R.Chloride-induced filiform corrosion of organic-coated magnesium[J]. Electrochim. Acta, 2011, 56: 1894
[9] Zhang X.Study on microstructure, properties and corrosion behavior of Mg-Y binary magnesium alloys [D]. Beijing: General Resear-ch Institute for Nonferrous Metals, 2013(张新. Mg-RE基稀土镁合金组织、性能与腐蚀机理研究 [D]. 北京: 北京有色金属研究总院, 2013)
[10] Kirby C.Galvanic and crevice corrosion effects in Magnox A180 alloy[J]. Corros. Sci., 1987, 27: 575
[11] Sharland S M, Jackson C P, Diver A J.A finite-element model of the propagation of corrosion crevices and pits[J]. Corros. Sci., 1989, 29: 1149
[12] Song G, Atrens A.Understanding magnesium corrosion—a framework for improved alloy performance[J]. Adv. Eng. Mater., 2003, 5: 837
[13] Makar G L, Kruger J.Corrosion of magnesium[J]. Int. Mater. Rev., 1993, 38: 138
[14] Zeng R C, Zhou W Q, Han E-H, et al.Effect of pH values on as-extruded magnesium alloy AM60[J]. Acta Metall. Sin., 2005, 41: 307(曾荣昌, 周婉秋, 韩恩厚等. pH值对挤压Mg合金AM60腐蚀的影响[J]. 金属学报, 2005, 41: 307)
[15] Karavai O V, Bastos A C, Zheludkevich M L, et al.Localized electrochemical study of corrosion inhibition in microdefects on coated AZ31 magnesium alloy[J]. Electrochim. Acta, 2010, 55: 5401
[16] Lamaka S V, Karavai O V, Bastos A C, et al.Monitoring local spatial distribution of Mg2+, pH and ionic currents[J]. Electrochem. Commun., 2008, 10: 259
[17] Williams G, McMurray H N. Localized corrosion of magnesium in chloride-containing electrolyte studied by a scanning vibrating electrode technique[J]. J. Electrochem. Soc., 2008, 155: C340
[18] Williams G, McMurray H N, Grace R. Inhibition of magnesium localised corrosion in chloride containing electrolyte[J]. Electrochim. Acta, 2010, 55: 7824
[19] Williams G, Dafydd H A L, Grace R. The localised corrosion of Mg alloy AZ31 in chloride containing electrolyte studied by a scanning vibrating electrode technique[J]. Electrochim. Acta, 2013, 109: 489
[20] Williams G, Birbilis N, McMurray H N. The source of hydrogen evolved from a magnesium anode[J]. Electrochem. Commun., 2013, 36: 1
[21] Zhou W Q, Shan D Y, Han E-H, et al. Phosphate conversion coating on diecast AZ91D and its corrosion resistance [J]. Mater. Sci. Forum, 2005, 488/489: 819
[22] Alvarez R B, Martin H J, Horstemeyer M F, et al.Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy[J]. Corros. Sci., 2010, 52: 1635
[23] Neil W C, Forsyth M, Howlett P C, et al.Corrosion of magnesium alloy ZE41-The role of microstructural features[J]. Corros. Sci., 2009, 51: 387
[24] Martin H J, Horstemeyer M F, Wang P T.Structure-property quantification of corrosion pitting under immersion and salt-spray environments on an extruded AZ61 magnesium alloy[J]. Corros. Sci., 2011, 53: 1348
[25] Martin H J, Horstemeyer M F, Wang P T.Comparison of corrosion pitting under immersion and salt-spray environments on an as-cast AE44 magnesium alloy[J]. Corros. Sci., 2010, 52: 3624
[26] Song W W, Martin H J, Hicks A, et al.Corrosion behaviour of extruded AM30 magnesium alloy under salt-spray and immersion environments[J]. Corros. Sci., 2014, 78: 353
[27] Song G L, Hapugoda S, John D S.Degradation of the surface appearance of magnesium and its alloys in simulated atmospheric environments[J]. Corros. Sci., 2007, 49: 1245
[28] Wang H X, Song Y W, Yu J, et al.Characterization of filiform corrosion of Mg-3Zn Mg alloy[J]. J. Electrochem. Soc., 2017, 164: C574
[29] Zhang X, Zhang K.Research progress on corrosion performance and mechanism of magnesium and its alloys[J]. Corros. Sci. Prot. Technol., 2015, 27: 78(张新, 张奎. 镁合金腐蚀行为及机理研究进展[J]. 腐蚀科学与防护技术, 2015, 27: 78)
[30] Hiromoto S, Yamamoto A, Maruyama N, et al.Influence of pH and flow on the polarisation behaviour of pure magnesium in borate buffer solutions[J]. Corros. Sci., 2008, 50: 3561
[31] Altun H, Sen S.Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy[J]. Mater. Des., 2004, 25: 637
[32] Zeng R C, Zhang J, Huang W J, et al.Review of studies on corrosion of magnesium alloys[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: S763
[33] Ferrando W A.Review of corrosion and corrosion control of magnesium alloys and composites[J]. J. Mater. Eng., 1989, 11: 299
[34] Song Y W, Shan D Y, Chen R S, et al.Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy[J]. Corros. Sci., 2010, 52: 1830
[35] Ko Y J, Chang D Y, Lim J D, et al. Effect of Mg17Al12 precipitate on corrosion behavior of AZ91D magnesium alloy [J]. Mater. Sci. Forum, 2003, 419-422: 851
[36] Song G L, Atrens A, Dargusch M.Influence of microstructure on the corrosion of diecast AZ91D[J]. Corros. Sci., 1998, 41: 249
[37] Liu X B, Shan D Y, Song Y W, et al.Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg-7Sn magnesium alloy[J]. Electrochim. Acta, 2011, 56: 2582
[38] Zhang T, Li Y, Wang F H.Roles of β phase in the corrosion process of AZ91D magnesium alloy[J]. Corros. Sci., 2006, 48: 1249
[39] Song G L, Atrens A, Wu X L, et al.Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride[J]. Corros. Sci., 1998, 40: 1769
[40] Li C, Sun J Y, Li Z D, et al.Microstructure and corrosion behavior of Al-10%Mg2Si cast alloy after heat treatment[J]. Mater. Charact., 2016, 122: 142
[41] Feng H, Liu S H, Du Y, et al.Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys[J]. J. Alloy. Compd., 2017, 695: 2330
[42] Song Y W, Shan D Y, Chen R S, et al.Corrosion characterization of Mg-8Li alloy in NaCl solution[J]. Corros. Sci., 2009, 51: 1087
[43] Song Y W, Shan D Y, Han E-H.Pitting corrosion of a rare earth Mg alloy GW93[J]. J. Mater. Sci. Technol., 2017, 33: 954
[44] Liu J H, Song Y W, Chen J C, et al.The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy[J]. Electrochim. Acta, 2016, 189: 190
[45] Argade G R, Panigrahi S K, Mishra R S.Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium[J]. Corros. Sci., 2012, 58: 145
[46] Hoog C O, Birbilis N, Zhang M X, et al.Surface grain size effects on the corrosion of magnesium[J]. Key. Eng. Mater., 2008, 384: 229
[47] Matsubara H, Ichige Y, Fujita K, et al.Effect of impurity Fe on corrosion behavior of AM50 and AM60 magnesium alloys[J]. Corros. Sci., 2013, 66: 203
[48] Zhang J L, Liu Y L, Zhou J, et al.Kinetic study on the corrosion behavior of AM60 magnesium alloy with different Nd contents[J]. J. Alloy. Compd., 2015, 629: 290
[49] Jia H M, Feng X H, Yang Y S.Influence of solution treatment on microstructure, mechanical and corrosion properties of Mg-4Zn alloy[J]. J. Magnes. Alloy., 2015, 3: 247
[50] Zhang J Y, Xu M, Teng X Y, et al.Effect of Gd addition on microstructure and corrosion behaviors of Mg-Zn-Y alloy[J]. J. Magnes.Alloy., 2016, 4: 319
[51] Zhou W Q, Shan D Y, Zeng R C, et al.Corrosion behavior and surface protection of magnesium alloys[J]. Mater. Prot., 2002, 35(7): 1(周婉秋, 单大勇, 曾荣昌等. 镁合金的腐蚀行为与表面防护方法[J]. 材料保护, 2002, 35(7): 1)
[52] Dong K H, Song Y W, Shan D Y, et al.Research progress of micro-arc oxidation technology on magnesium alloys[J]. Surf. Technol., 2015, 44(3): 74(董凯辉, 宋影伟, 单大勇等. 镁合金微弧氧化技术的研究进展[J]. 表面技术, 2015, 44(3): 74)
[53] Dong K H, Song Y W, Shan D Y, et al.Corrosion behavior of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy[J]. Corros. Sci., 2015, 100: 275
[54] Song Y W, Shan D Y, Chen R S, et al.Formation mechanism of phosphate conversion film on Mg-8.8Li alloy[J]. Corros. Sci., 2009, 51: 62
[55] Liu D, Song Y W, Shan D Y, et al.Self-healing coatings for magnesium alloys: A review[J]. Surf. Technol., 2016, 45(12): 28(刘丹, 宋影伟, 单大勇等. 镁合金自修复涂层研究进展[J]. 表面技术, 2016, 45(12): 28)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[7] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[8] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[9] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[10] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[11] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[12] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[13] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[14] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[15] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
No Suggested Reading articles found!