Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 590-596    DOI: 10.11902/1005.4537.2016.118
Current Issue | Archive | Adv Search |
Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel
Chao SUN1, Xiao YANG2, Yuhua WEN2()
1 Science and Technology on Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610213, China
2 School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China
Download:  HTML  PDF(3284KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To improve the high-temperature oxidation resistance of austenitic stainless steels, the high-Al austenitic stainless alloy coatings were deposited on the surfaces of 316 austenitic stainless steel using the direct current magnetron sputtering. Cyclic oxidation tests were performed at 850 ℃ in air. The effect of the alloy coatings on the oxidation resistance of 316 austenitic stainless steel was studied by SEM,EDS and XRD. The oxidation resistance of 316 austenitic stainless steels with coatings was much better than that without coatings. The formation of a continuous and dense film on the surfaces of alloy coatings consisting of Al2O3, Fe(Cr, Al)2O4 and NiCrO3 is responsible for its excellent oxidation resistance. The poor oxidation resistance of 316 stainless steel can be ascribed to the formation of a rough and loose film on the surfaces consisting of Fe2O3, Cr2O3, FeCr2O4 and NiCr2O4.

Key words:  high-aluminum alloy coating      magnetron sputtering      austenitic stainless steel      high-temperature oxidation resistance     
Received:  15 August 2016     
ZTFLH:  TG174.444  
Fund: Supported by National Natural Science Foundation of China (51671138)

Cite this article: 

Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 590-596.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.118     OR     https://www.jcscp.org/EN/Y2017/V37/I6/590

Fig.1  SEM images of cross section (a) and surface (b) of high-aluminum alloy coating
Fig.2  Oxidation kinetics of 316 stainless steel with and without alloy coating during cyclic oxidation at 850 ℃ in air: (a) mass gain per unit area as a function of cyclic number (cycle period=20 h); (b) square of mass gain per unit area as a function of time
Fig.3  Photos of 316 stainless steel with (a) and without (b) alloy coating after cyclic oxidation at 850 ℃ for 100 h
Fig.4  XRD patterns of 316 stainless steel with (a) and without (b) alloy coating after cyclic oxidation at 850 ℃ for 100 h
Fig.5  SEM surface micrographs of 316 stainless steel with (a) and without (c) alloy coating after cyclic oxidation at 850 ℃ for 100 h and the magnified images of areas I (b) and II (d) in Fig.5a and b
Element Unexfoliated area Exfoliated area
O 64.53 60.56
Fe 3.95 28.79
Cr 31.53 8.92
Ni --- 1.73
Table 1  Chemical compositions of surface oxides formed on 316 stainless steel after cyclic oxidation at 850 ℃ for 100 h(atomic fraction / %)
Fig.6  SEM cross-sectional micrographs of 316 stainless steel with (a) and without (b) alloy coating after cyclic oxidation at 850 ℃ for 100 h
[1] Brady M P, Yamamoto Y, Lu Z P, et al.Alumina-forming austenitic: A new class of heat-resistant stainless steels[J]. Stainless Steel World Mag., 2007, 38(11): 2737
[2] Wu X D, Wu G, Zhu J J, et al.High temperature oxidation resistance of aluminum-containing austenitic heat-resisting steel[J]. Heat Treat. Met., 2016, 41(8): 1(吴晓东, 吴刚, 朱晶晶等. 含铝奥氏体耐热钢的高温抗氧化性能[J]. 金属热处理, 2016, 41(8): 1)
[3] Li M S.High Temperature Corrosion in Metals [M]. Beijing: Metallurgical Industry Press, 2011: 239(李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2011: 239)
[4] Chinese society for corrosion and protection. Zhu R Z. Heat Resistant Steels and High Temperature Alloys [M]. Beijing: Chemical Industry Press, 1995: 32(中国腐蚀与保护协会. 朱日彰. 耐热钢和高温合金 [M]. 北京: 化学工业出版社,1995: 32)
[5] Zhu R Z, He Y D, Qi H B.High Temperature Corrosion and High-temperature Anti-corrosive Materials[M]. Shanghai: Shanghai Scientific and technical publishers, 1995: 186(朱日彰, 何业东, 齐慧滨. 高温腐蚀及耐高温腐蚀材料 [M]. 上海: 上海科学技术出版社, 1995: 186)
[6] Pan Z Z, Zhao Z L, Kang Z F, et al.Influence factors on high temperature oxidation resistance and creep property of new type AFA stainless steel[J]. Met. World, 2017, (3): 32(盘志忠,赵子龙, 康志芳等. 新型AFA不锈钢抗高温氧化性及蠕变性能的影响因素[J]. 金属世界, 2017, (3): 32)
[7] Meng Q, La Q P, Sa X R, et al.Research status and development trend of high-aluminum austenitic stainless steel[J]. Mater. Rev., 2013, (17): 101(孟倩, 喇培倩, 撒兴瑞等. 高铝奥氏体不锈钢研究现状及发展趋势[J]. 材料导报, 2013, (17): 101)
[8] Xu Q X, Lv P Z.Research progress on a new class of high-temperature oxidation-resistant austenitic heat-resistant steels[J]. Mater. China, 2011, 30(12): 1(徐向棋,吕昭平. 新一代新型抗高温氧化奥氏体耐热钢的研究进展[J]. 中国材料进展, 2011, 30(12): 1)
[9] Yang D W, Huang F J, Cao L Y, et al.Research progress and development trend of high temperature protective coatings[J]. Mater. Prot., 2009, 42(1): 40(杨文东, 黄剑锋, 曹丽云等. 高温防护涂层的研究进展及发展趋势[J]. 材料保护, 2009, 42(1): 40)
[10] Lin C, Du N, Zhao Q.New approaches on high-temperature coatings[J]. Mater. Prot., 2001, 34(6): 4(林翠, 杜楠, 赵晴. 高温涂层研究的新进展[J]. 材料保护, 2001, 34(6): 4)
[11] Wang J Y, Liu A L, Li F C.Effect of hot dip aluminizing on isothermal oxidation behavior of 201 stainless steel[J]. J. Heilongjiang Univ. Sci. Technol., 2016, 26(5): 532(王建永, 刘爱莲, 李凤春. 热浸镀铝对201不锈钢恒温氧化行为的影响[J]. 黑龙江科技大学学报, 2016, 26(5): 532)
[12] Brady M P, Yamamoto Y, Santella M L, et al.The development of alumina-forming austenitic stainless steels for high-temperature structural use[J]. High-temperature Alloys, 2008, 60(7): 12
[13] Briks N, Meier G H, Pettit F S.Translated by Xin L, Wang W. Introduction to High Temperature Oxidation of Metals [M]. Beijing: Higher Education Press, 2010: 33(Briks N, Meier G H, Pettit F S著. 辛丽, 王文译. 金属高温氧化导论 [M]. 北京: 高等教育出版社, 2010: 33)
[14] Liu Z, Gao W, Li M S.Cyclic oxidation of sputter-deposited nanocrystalline Fe-Cr-Ni-Al alloy coatings[J]. Oxid. Met., 1999, 51(516): 403
[15] Taniguchi S, Andoh A.Improvement in the oxidation resistance of an Al-deposited Fe-Cr-Al foil by preoxidation[J]. Oxid. Met., 2002, 58(5/6): 545
[16] Li P, Jia J G, An L, et al.Preparation and oxidation resistance of siliconized layer deposited on 0Cr18Ni9 stainless steel[J]. Heat Treat. Met., 2011, 36(5): 54(李鹏, 贾建刚, 安亮等. 0Cr18Ni9不锈钢表面渗Si层制备及抗氧化性能研究[J]. 金属热处理, 2011, 36(5): 54)
[17] Chen J.Research of high temperature oxidation of hot-dipped Al coating stainless steel[J]. Hot Work. Technol., 1998,(6): 12, 1998,(6): 12)
[18] Xia Y P, Zhu C F, Fan D M, et al.High temperature oxidation process of SUS304 and SUS430 stainless steels[J]. Mater. Prot., 2013, 46(12): 27(夏云鹏, 朱承飞, 范迪民等. SUS304, SUS430不锈钢的高温氧化过程[J]. 材料保护, 2013, (12): 27)
[19] Chen H.Research on high temperature oxidation and grain growth behaviors in austenitic stainless steels [D]. Lanzhou University of Technology, 2011: 11(陈华. 奥氏体不锈钢高温氧化性能与晶粒长大行为的研究 [D]. 兰州理工大学, 2011: 11)
[20] Jia F X, Hou R M, Jia X B.Performance and Selection of Stainless Steel [M]. Beijing: Chemical Industry Press, 2013: 138(贾凤翔, 侯若明, 贾晓滨. 不锈钢性能及其选用 [M]. 北京: 化学工业出版社, 2013: 138)
[21] Cheng X N, Yao Y Q, Li D S, et al.High temperature oxidation behavior of alumina-forming austenitic stainless steel[J]. Heat Treat. Met., 2017, 42(2): 72(程晓农, 姚永泉, 李冬升等. 一种含铝奥氏体不锈钢的高温氧化行为[J].金属热处理, 2017, 42(2): 72)
[22] Chinese Society for Corrosion and Protection. Li T F. High Temperature Oxidation and Thermal Corrosion in Metals[M]. Beijing, 2003: 139(中国腐蚀与保护协会. 李铁藩著. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 139)
[23] Stott F H, Wood G C, Stringer J.The influence of alloying elements on the development and maintenance of protective scales[J]. Oxid. Met., 1995, 44(1/2): 113
[24] Wang Y G, He Y D, Zhu R Z.Influence of Y+ in plantation on high temperature oxidation of Fe3Al[J]. J. Chin. Rare Earth Soc., 1995, 44(1/2): 113(王永刚, 何业东, 朱日彰. 离子注入Y+对Fe3Al高温氧化行为的影响[J]. 中国稀土学报, 1995, 44(1/2): 113)
[1] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[2] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[3] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[4] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[5] YAN Minsheng, HE Jin, MAO Shoudong, YANG Lijing, NIE Xia, SONG Zhenlun, ZHAN Zhaolin. Effect of NiCrAlY Coating on Oxidation Resistance of Sm2Co17 Magnets at High Temperatures[J]. 中国腐蚀与防护学报, 2015, 35(2): 183-188.
[6] YIN Kaiju, QIU Shaoyu, TANG Rui, HONG Xiaofeng, ZHANG Lefu, ZHANG Qiang. CORROSION BEHAVIOR OF SUPER-AUSTENITIC STAINLESS STEEL AL-6XN IN SUPERCRITICAL WATER[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.
[7] JIANG Ke, CHEN Xuedong, YANG Tiecheng, ZHANG wei, LIANG Chunlei. HIGH TEMPERATURE NAPHTHENIC ACID CORROSION RESEARCH OF TYPICAL AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(1): 59-63.
[8] SUN Tao, DENG Bo, XU Juliang, LI Jin, JIANG Yiming. INFLUENCE OF NIOBIUM AND NITROGEN ON THE RESISTANCE TO PITTING AND INTERGRANULAR CORROSION OF 304 AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[9] XU Shan,DU Nan,ZHAO Qing,YE Mingyang. MONITORING THE PITTING SUSCEPTIBILITY OF AUSTENITIC STAINLESS STEEL IN NaCl SOLUTION BY ELECTRONIC SPECKLE PATTERN INTERFEROMETRY[J]. 中国腐蚀与防护学报, 2010, 30(5): 403-409.
[10] CHEN Meiling LIU Yuandong YANG Li YANG Jun GAO Hong. PITTING CORROSION RESISTANCE OF NANO-SiC POWDERS REINFORCED CAST STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2009, 29(6): 411-414.
[11] ANG Dongsheng TIAN Zongjun CHEN Zhiyong SHEN Lida WU Hongyan ZHANG Pingze LIU . HIGH-TEMPERATURE OXIDATION RESISTANCE COATINGS ON TiAl ALLOY SURFACE[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
[12] . CORROSION FATIGUE BEHAVIOR OF 304 STAINLESS STEEL MICRO-SIZED SPECIMENS[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .
[13] ;. RESEARCH OF EPR ON THE SUSCEPTIBILITY TO INTERGRANULAR ATTACK OF AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2007, 27(1): 54-59 .
[14] Haibo Lu; Ying Li; Fuhui Wang. Corrosion Characteristics of Cu-20Zr alloy in Hydrochloric Acid Solution[J]. 中国腐蚀与防护学报, 2006, 26(2): 75-79 .
[15] Guozhe Meng; Ying Li; Fuhui Wang. ELECTROCHEMICAL BEHAVIOR OF Fe-20Cr NANOCRYSTALLINE COATINGS[J]. 中国腐蚀与防护学报, 2006, 26(1): 11-18 .
No Suggested Reading articles found!