Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 583-589    DOI: 10.11902/1005.4537.2016.211
Current Issue | Archive | Adv Search |
Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution
Chao FENG1,2, Bicao PENG1,2, Yi XIE1,2, Jun WANG1,2, Minghuan LI3, Tangqing WU3(), Fucheng YIN3
1 State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China
2 Hunan Xiangdian Boiler & Pressure Vessel Test Center Ltd., Changsha 410007, China;
3 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Download:  HTML  PDF(9012KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of T91 steel by neutral salt spray with 0.1% (mass fraction) NaHSO3 was studied by means of mass loss measurement, macro-appearances observation and characterization of corrosion products with scanning electron microscope/energy dispersive spectrometer (SEM/EDS). Results showed the corrosion product on the steel surface increases gradually throughout the salt spray testing, and its coverage ratio, integrity and compactness increase accordingly, and finally the corrosion product completely covers the steel surface. The corrosion product composed mainly of FeOOH, Fe2O33H2O and Cr2O3 containing a little sulfur. The corrosion process of T91 steel by salt spray test can be expressed as follows: during the salt spray with NaHSO3 solution, localized corrosion sporadically generates on the steel surface at the initial stage, and then these localized corrosion develops into big corrosion spots, and finally those big corrosion spots spread and connected each other to generate corrosion on large area.

Key words:  T91 steel      salt spray test      SEM      localized corrosion     
Received:  26 October 2016     
ZTFLH:  TG172.4  
Fund: Supported by National Natural Science Foundation of China (51601164) and China Postdoctoral Science Foundation (2017M622594)

Cite this article: 

Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 583-589.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.211     OR     https://www.jcscp.org/EN/Y2017/V37/I6/583

Fig.1  Mass loss curve of T91 steel under salt spray with 0.1%NaHSO3 solution
Fig.2  Macro-appearances of the corrosion products of T91 steel after salt spray test in 0.1%NaHSO3solution for 25 h (a), 50 h (b), 75 h (c) and 100 h (d)
Fig.3  Surface micro-appearance of the corrosion product film formed on T91 steel after salt spray test for 25 h (a) and the magnified image of the square area in Fig.3a (b)
Position Fe Cr S Cl Si
1 51.13 10.06 3.29 --- ---
2 11.97 2.46 2.26 0.53 ---
3 49.14 4.46 --- --- 1.92
4 5.48 13.16 4.55 0.71 ---
5 58.65 7.68 --- --- ---
6 15.94 --- 1.53 --- ---
7 40.08 15.37 7.80 --- ---
8 41.80 16.44 2.49 --- ---
9 9.43 9.41 1.58 --- ---
Table 1  EDS results of the corrosion products formed on T91 steel after salt spray test in 0.1%NaHSO3 solution for 25 h
Fig.4  Surface micro-appearance of the corrosion product film formed on T91 steel after salt spray test in 0.1%NaHSO3 solution for 50 h (a) and the magnified image of the square area in Fig.4a (b)
Fig.5  Surface micro-appearance of the corrosion product film formed on T91 steel after salt spray test in 0.1%NaHSO3 solution for 75 h (a) and the magnified image of the square area in Fig.5a (b)
Fig.6  Surface micro-appearance of the corrosion product film formed on T91 steel after salt spray test in 0.1%NaHSO3 solution for 100 h (a) and the magnified image of the square area in Fig.6a (b)
Fig.7  XRD patterns of the corrosion products formed on T91 steel after salt spray test for different time
Fig.8  Corrosion morphologies of T91 steel after salt spray test for 25 h (a), 50 h (b), 75 h (c) and 100 h (d)
[1] Deng D A, Zhang Y B, Li S, et al.Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394(邓德安, 张彦斌, 李索等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394)
[2] Deng D A, Ren S D, Li S, et al.Influence of multi-thermal cycle and constraint condition on residual stress in P92 steel weldment[J]. Acta Metall. Sin., 2017, 53: 1532(邓德安, 任森栋, 李索等. 多重热循环和约束条件对P92钢焊接残余应力的影响[J]. 金属学报, 2017, 53: 1532)
[3] Ampornrat P, Was G.Oxidation of ferritic-martensitic alloys T91, HCM12A and HT-9 in supercritical water[J]. J. Nucl. Mater., 2007, 371: 1
[4] Chen Y, Sridharan K, Allen T.Corrosion behavior of ferritic-martensitic steel T91 in supercritical water[J]. Corros. Sci., 2006, 48: 2843
[5] Liu G M, Liu K S, Mao X F, et al.Hot corrosion of T91 steel in molten mixture of KCl+Na2SO4+K2SO4[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 23(刘光明, 刘康生, 毛晓飞等. T91钢在KCl+Na2SO4+K2SO4熔融盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37: 23)
[6] Zhang S S, Cheng G, Zeng Q M.Failure analysis for oxide scale on inner side of T91 high temperature superheater tube[J]. Corros. Sci. Prot. Technol., 2016, 28: 259(张山山, 陈光, 曾庆猛. T91钢高温过热器内壁氧化皮的失效分析[J]. 腐蚀科学与防护技术, 2016, 28: 259)
[7] Zhang D Q, Xu J J.Influence of steam content on oxidation of SA213 T91 steel at 650 ℃[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 349(张都清, 徐敬军. 水蒸汽含量对SA213 T91钢650 ℃氧化行为的影响[J]. 中国腐蚀与防护学报, 2009, 29: 349)
[8] Shi Q Q, Liu J, Yan W, et al.High temperature oxidation behavior of SIMP steel and T91 steel at 800 ℃[J]. Chin. J. Mater. Res., 2016, 30: 81(石全强, 刘坚, 严伟等. SIMP钢和T91钢在800 ℃的高温氧化行为[J]. 材料研究学报, 2016, 30: 81)
[9] Tomlinson L, Cory N J.Hydrogen emission during the steam oxidation of ferritic steels: Kinetics and mechanism[J]. Corros. Sci., 1989, 29: 939
[10] Gao W H, Shen Z, Zhang L F.Corrosion behavior of T91 steel in supercritical water[J]. Corros. Prot., 2016, 37: 444(高文华, 沈朝, 张乐福. T91钢在超临界水环境中的腐蚀性能[J]. 腐蚀与防护, 2016, 37: 444)
[11] Li X G, Wang X G, He J W.The property of water vapor oxidation resistance of T91 steel treated by shot blasted and electrophoresis deposited RE coating[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 101(李辛庚, 王学刚, 何嘉文. 喷丸与电泳沉积稀土薄膜复合处理提高T91钢抗水蒸气氧化性能的研究[J]. 中国腐蚀与防护学报, 2002, 22: 101)
[12] Xia D H, Song S Z, Li J, et al.On-line monitoring atmospheric corrosion of metal materials by using a novel corrosion electrochemical sensor[J]. Corros. Sci. Prot. Technol., 2017, 29: 581(夏大海, 宋诗哲, 李健等. 新型腐蚀电化学传感器在金属材料大气腐蚀现场检测中的应用[J]. 腐蚀科学与防护技术, 2017, 29: 581)
[13] Xu H, Yuan J, Zhu Z L, et al.Oxidation behavior of ferritic-martensitic steel P92 exposed to supercritical water at 600 ℃/25 MPa[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 119(徐鸿, 袁军, 朱忠亮等. 铁素体-马氏体P92钢在600 ℃/25 MPa超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2014, 34: 119)
[14] Zhang Q L, Wang Q J, Liu C L.Analysis of corrosion reason for polished T91 seamless tube[J]. Bao-Steel Technol., 2014, 36: 61(张清廉, 王起江, 刘彩玲. 抛光态T91无缝管腐蚀原因分析[J]. 宝钢技术, 2014, 36: 61)
[15] Liu Y W, Wang Z Y, Wang J, et al.Corrosion behavior of hot-dip galvanized steel for power transmission tower in simulated acid rain atmospheric environment[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 426(刘雨薇, 王振尧, 王军等. 输电塔杆用热浸镀锌钢在模拟酸雨大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34: 426)
[16] Yin Y Q, Zhao J B, Cheng X Q, et al.Corrosion rules and mechanism of high strength steel of Q450NQRl[J]. Sci. Technol. Rev., 2012, 30: 48(尹雨群, 赵晋斌, 程学群等. 高强耐候钢Q450NQR1腐蚀规律和机制[J]. 科技导报, 2012, 30: 48)
[17] Usher K M, Kaksonen A H, Cole I, et al.Critical review: microbially influenced corrosion of buried carbon steel pipes[J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
[18] Jia R, Tan J L, Jin P, et al.Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm[J]. Corros. Sci., 2018, 130: 1
[19] Xu D K, Li Y C, Song F M, et al.Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385
[20] Zhang P Y, Xu D K, Li Y C, et al.Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015, 101: 14
[1] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] ZHAO Boru, SUN Zhi, ZHAO Jianwei, CHEN Zhidong. Self-assembly Process of Hexadecanethiol on Silver Plating Surface and Its Protectiveness[J]. 中国腐蚀与防护学报, 2020, 40(3): 281-288.
[4] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[5] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[6] Wang YAO, Herong ZHOU, Kui XIAO, Pengyang LIU, Jiayong DAN, Run WU. Corrosion Behavior of DC06 Extra Deep Drawing Cold Rolled Steel in Neutral Salt Spray Test[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[7] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[8] Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[9] Penghui ZHANG, Kun PANG, Kangkang DING, Xiangfeng KONG, Xin PENG. Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
[10] Guangming LIU,Kangsheng LIU,Xiaofei MAO,Zhongping WAN,Jianhang HUANG,Mingming YU,Yuankui WANG. Hot Corrosion of T91 Steel in Molten Mixture of KCl+Na2SO4+K2SO4[J]. 中国腐蚀与防护学报, 2017, 37(1): 23-28.
[11] Xiao TANG,Chuntao SHI,Guang CAO,Yan LI. Effect of Coastal Soil Environment on Localized Corrosion for Oil and Gas Pipelines[J]. 中国腐蚀与防护学报, 2016, 36(3): 191-196.
[12] Shuzhen ZHAO,Lining XU,Juanjuan DOU,Wei CHANG,Minxu LU. Influence of Acetic Acid on Top Localized Corrosion of X70 Steel Pipeline in CO2 Containing Wet Gas[J]. 中国腐蚀与防护学报, 2016, 36(3): 231-237.
[13] Wenye LU,Dieyi CHEN,Burong CHEN,Tao TANG. Hexadecane-thiol Self-assembly Monolayers on Silver for Anti-tarnishing[J]. 中国腐蚀与防护学报, 2016, 36(2): 172-176.
[14] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
[15] Fang SONG,Youyuan CHEN,Qinpeng CHANG,Tao PENG. Corrosion Inhibition of Self-assembled Monolayer of Phytic Acid for HAl77-2 Brass[J]. 中国腐蚀与防护学报, 2015, 35(4): 317-325.
No Suggested Reading articles found!