Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 533-539    DOI: 10.11902/1005.4537.2016.144
Current Issue | Archive | Adv Search |
Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System
Meng MEI, Hongai ZHENG(), Huida CHEN, Ming ZHANG, Daquan ZHANG
College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Download:  HTML  PDF(2111KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microbe induced corrosion of Cu in circulation cooling water system was investigated in the presence of sulfate reducing bacteria by means of electrochemical measurement and surface analysis techniques. Meanwhile, the inhibition effect of cysteine on Cu was also assessed. The results show that, polarization resistance of Cu increased first and then decreased in the water with sulfate reducing bacteria, and the polarization resistance of Cu is 25.82 kΩcm2 lower than that in the sterile water. The corrosion current density of Cu reduced first and then increased, while the electrochemical impedance spectroscopy presented the same tendency. In the sulfate reducing bacteria containing water, the addition of different concentrations of L-cysteine can lead the decline of the corrosion current density Icorr and the expansion of the radius of electrochemical impedance of Cu, particularly with the concentration of 10-3 mol/L, L-cysteine exhibits the best corrosion inhibition effect for Cu in the water with sulfate reducing bacteria.

Key words:  microbial corrosion      sulfate reducing bacteria      electrochemical impedance spectroscopy      polarization curve     
Received:  02 September 2016     
ZTFLH:  TG174.3  

Cite this article: 

Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 533-539.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.144     OR     https://www.jcscp.org/EN/Y2017/V37/I6/533

Fig.1  SEM images of Cu after corrosion in solutions without (a, c) and with (b, d) SRB for 1 d (a, b) and10 d (c, d)
Fig.2  Nyquist (a) and Bode (b) plots of Cu electrode after immersion in SRB-containing and sterile solutions for 1~10 d
Condition Time
d
Rs
Ωcm2
Q1
Scm-2s-n
n Rct
kΩcm2
ChiSq
1 123.7 1.203×10-4 0.8178 41.500 7.320×10-4
Without SRB 5 125.9 2.777×10-4 0.7294 6.418 9.514×10-4
10 137.9 2.845×10-5 0.7950 49.250 8.264×10-4
1 119.3 2.134×10-4 0.7546 5.352 8.020×10-4
With SRB 5 123.2 2.264×10-4 0.8768 23.680 8.960×10-4
10 115.6 3.722×10-4 0.8089 23.430 8.935×10-4
Table 1  Fitting results of EIS of Cu in SRB-containing solution for different time
Fig.3  Equivalent circuit of EIS of Cu after immersion in SRB-containing solution for different time
Fig.4  Polarization curves of Cu after immersion in SRB-containing and sterile solutions for different time
Fig.5  Nyquist (a) and Bode (b) plots of Cu electrode after immersion for 1 d in the solution containing SRB anddifferent concentrations of L-cysteine
Fig.6  Equivalent circuit of Cu in different solution for 1 d
Condition Time / d Icorr / μAcm-2 Ecorr / V Bc / mVdec-1 Ba / mVdec-1
1 8.989 -0.937 7.108 3.193
Without SRB 5 15.620 -0.932 6.198 2.812
10 2.184 -1.061 5.761 4.273
1 29.060 -0.509 5.557 1.129
With SRB 5 10.180 -0.618 8.893 1.008
10 23.290 -0.670 7.155 1.566
Table 2  Fitting results of polarization curves
Concentration of L-cysteine / molL-1 Rs
Ωcm2
Q1
Scm-2s-n
Rf
Ωcm2
Q2
Scm-2s-n
Rct
kΩcm2
ChiSq
0 119.3 2.134×10-4 --- --- 5.352 8.020×10-4
10-2 116.7 3.988×10-4 830.2 1.319×10-5 23.410 1.429×10-3
10-3 120.0 3.874×10-4 321.7 1.736×10-5 83.550 2.371×10-3
10-4 112.5 1.090×10-3 487.1 1.370×10-4 37.810 2.474×10-3
Table 3  Fitting results of EIS of Cu after immersion for 1 d in the cooling water containing SRB and different concentrations of L-cysteine
Fig.7  Tafel plots of Cu electrode after immersion for 1 d in the SRB-containing solution with different concentrations of L-cysteine
Concentration of L-cysteine / molL-1 IcorrμAcm-2 EcorrV BcmVdec-1 BamVdec-1
0 29.06 -0.509 5.557 1.129
10-2 23.34 -0.951 5.352 5.199
10-3 6.026 -0.766 6.686 3.618
10-4 21.47 -0.882 5.963 3.245
Table 4  Fitting results of polarization curves
[1] Zheng Q, Li J, Du Y L, et al.Effects of sulfate reducing bacteria on electrochemical corrosion behavior of HSn70-1A copper alloy[J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 38(郑强, 李进, 杜一立等. 硫酸盐还原菌对HSn70-1A铜合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2008, 28(1): 38)
[2] Singh A, Sharma C, Lata S.Microbial influenced corrosion due to Desulfovibrio desulfuricans[J]. Anti-Corros. Methods Mater., 2011,58: 315
[3] Lavania M, Sarma P M, MandalA K, et al. Efficacy of natural biocide on control of microbial induced corrosion in oil pipelines mediated by Desulfovibrio vulgaris and Desulfovibrio gigas[J]. J. Environ. Sci., 2011, 23: 1394
[4] Cetin D, Aksu M L.Corrosion behavior of low-alloy steel in the presence of Desulfovibriocale doniensis[J]. Mater. Corros., 2013, 64: 236
[5] Noor N M, Yahaya N, Abdullah A, et al.Microbiologically influenced corrosion of X-70 carbon steel by Desulfovibrio vulgaris[J]. Adv. Sci. Lett., 2012, 13: 312
[6] Liu G Z, Wu J H.Studies on the research of marine microbial corrosion[J]. Corros. Prot., 2001, 22(10): 430(刘光洲, 吴建华. 海洋微生物腐蚀的研究进展[J]. 腐蚀与防护, 2001, 22(10): 430)
[7] Zhu R X, Li Z L.Microbial corrosion of industrial materials[J]. Corros. Prot., 1999, 20(10): 435(朱绒霞, 李增理. 工业材料的微生物腐蚀[J]. 腐蚀与防护, 1999, 20(10): 435)
[8] Kip N, van Veen J A. The dual role of microbes in corrosion[J]. ISME J., 2015, 9(3): 542
[9] Ke W.Advances in corrosion investigation of industrial and natural environment in china[J]. Corros. Prot., 2004, 25(1): 1(柯伟. 中国工业与自然环境腐蚀调查的进展[J]. 腐蚀与防护, 2004, 25(1): 1)
[10] Ren C Q, Zhou J M, Liu D X, et al.Study and development trend of corrosion inhibitor in oilfield[J]. Prog. Fine Petrochem., 2002, 3(10): 33(任呈强, 周计明, 刘道新等. 油田缓蚀剂研究现状与发展趋势[J]. 精细石油化工进展, 2002, 3(10): 33)
[11] Liu L, Peng D, Zhang Y P, et al.Study on corrosion inhibition performance of thiadiazole type corrosion inhibitor[J]. Mater. Rev., 2016, 30(6): 78(刘琳, 彭丹, 张艳萍等. 噻二唑型缓蚀剂缓蚀性能的研究[J]. 材料导报, 2016, 30(6): 78)
[12] Li X L, Zhang J P, Bi Z Y, et al.Effect of a new type of acidification inhibitor on corrosion inhibition performance of N80 steel[J]. Weld Tubing, 2016, 39(6): 5(李小龙, 张军平, 毕宗岳等. 一种新型复配酸化缓蚀剂对 N80 钢缓蚀性能的影响[J]. 焊管, 2016, 39(6): 5)
[13] Zaid G H, Rivas S P, Burgoyne T W, et al.Corrosion inhibitor systems using environmentally friendly green solvents [P]. US, US8575237, 2013
[14] Sun H M, Guo C J, Zeng Z Z.Study on scale and corrosion inhibition performance of a natural scale inhibitor[J]. Ind. Water Treat., 2000, 20(5): 21(孙海梅, 郭崇洁, 曾昭辉. 一种天然阻垢剂阻垢及缓蚀性能的研究[J]. 工业水处理, 2000, 20(5): 21)
[15] He X K, Chen B Z, Zhang Q F.Research status and prospect of corrosion inhibitor[J]. Mater. Prot., 2003, 36(8): 1(何新快, 陈白珍, 张钦发. 缓蚀剂的研究现状与展望[J]. 材料保护, 2003, 36(8): 1)
[16] Wu W M, Yang P, Du H Y, et al.Application of green corrosion inhibitor amino acid in inhibiting metal corrosion[J]. Surf. Technol., 2006, 35(6): 51(吴伟明, 杨萍, 杜海燕等. 绿色缓蚀剂氨基酸在抑制金属腐蚀方面的应用[J]. 表面技术, 2006, 35(6): 51)
[17] Li X, Hu Li X, Yan X C, et al.Study on corrosion mechanism of aliphatic amino acids to aluminum[J]. Mater. Prot., 2000, 33(5): 3(黎新, 胡立新, 颜肖慈等. 脂肪族氨基酸对铝缓蚀机理的研究[J]. 材料保护, 2000, 33(5): 3)
[18] Yang X K.Preparation of compound amino acid corrosion inhibitor[J]. New Technol. New Proc., 2002, (10): 39(杨新科. 复合氨基酸缓蚀剂的制备[J]. 新技术新工艺, 2002,(10): 39)
[19] Liu X X, Yuan L B, Li X H, et al.Corrosion inhibition of amino acids in sulfuric acid medium[J]. J. Yunnan Univ.(Nat. Sci. Ed.), 2003, 25(4): 355(刘晓轩, 袁朗白, 李向红等. 氨基酸类有机物在硫酸介质中对钢的缓蚀作用[J]. 云南大学学报 (自然科学版), 2003, 25(4): 355)
[20] Wang X J, Ge H H, Zhang M, et al.Corrosion behavior of brass in simulated cooling water containing sulfate reducing bacteria[J]. Corros. Prot., 2015, 36(10): 952(王学娟, 葛红花, 张敏等. 黄铜在含硫酸盐还原菌的模拟冷却水中的腐蚀行为[J]. 腐蚀与防护, 2015, 36(10): 952)
[21] Fu W, Li Y, Xu D, et al.Comparing two different types of anaerobic copper biocorrosion by sulfate-and nitrate-reducing bacteria[J]. Mater. Perform., 2014, 53(6): 66
[22] Li Y J, Zhang D.Study on corrosion behavior of Q235 steel in aerobic environment of sulfate-reducing bacteria[J]. Total Corros.Control, 2012, 5(26): 23(李永娟, 张盾. Q235 钢在含硫酸盐还原菌的有氧环境中腐蚀行为的研究[J]. 全面腐蚀控制, 2012, 5(26): 23)
[23] Cao L H.Synthesis of L-cysteine derivatives and their corrosion inhibition and molecular structure-activity relationships [D]. Nanjing University of Science and Technology, 2010(曹林华. L-半胱氨酸衍生物的合成及其缓蚀性能与分子构效关系的研究 [D]. 南京理工大学, 2010)
[1] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[2] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[3] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[4] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[5] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[6] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[7] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[8] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[10] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[11] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[15] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
No Suggested Reading articles found!