Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (4): 382-388    DOI: 10.11902/1005.4537.2016.067
Orginal Article Current Issue | Archive | Adv Search |
Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete
Teng LI1,2, Weiliang JIN1,3(), Chen XU1, Jianghong MAO3
1 Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2 Zhejiang Electric Power Design Institute, Hangzhou 310012, China
3 Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Download:  HTML  PDF(1269KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cathodic polarization curves of steel bar were measured via potentiodynamic polarization method. Then it gets the first-order differential analysis of polarization curves and acquires the critical hydrogen evolution potential and the hydrogen evolution current density of the steel bar. Next, the steady-state critical current density of hydrogen evolution was obtained by means of steady-state measurement. Results show that potentiodynamic polarization curves can monitor the electrochemical reaction process of the cathode. Before the abrupt point of the differential curve, the cathode reaction is dominated by the oxygen consumption reaction, and the hydrogen evolution reaction is the main control reaction after the abrupt point. With polarization curves, the steady-state critical current density of hydrogen evolution of the steel bar in reinforced concrete could be determined and thereby the probability of hydrogen embrittlement could be predicted. By this method, the steady-state hydrogen evolution critical current density of the test steel bar is acquired to be about 0.355 A/m2.

Key words:  electrochemical repair      hydrogen embrittlement      cathodic polarization curve      hydrogen evolution reaction      critical current density     
Received:  26 May 2016     
ZTFLH:  TU528.0  
Fund: Supported by National Natural Science Foundation of China (51578490, 51408534 and 51408544), Natural Science Foundation of Zhejiang Province (LQ14E080010), Major Technological Innovation Program of Hangzhou (20142011A41) and Science and Technology Funds of Hangzhou (20131831K31, 2014533B42and 20130533B18)
About author: 

These authors contributed equally to this work.

Cite this article: 

Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 382-388.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.067     OR     https://www.jcscp.org/EN/Y2017/V37/I4/382

Fig.1  Ee-pH curves of hydrogen-evolution reaction andoxygen-consumption reaction
Fig.2  Schematic diagrams of the dimensions of concrete specimen (unit: mm)
Fig.3  Test set for determination of dynamic potential pola-rization curves
Fig.4  Testing device for determination of polarization current density in steady state
Fig.5  Dynamic polarization curves of rebar in the concrete
Fig.6  First-order derivatives of the dynamic polarization curves in Fig.5
Fig.7  Dynamic polarization curve and its derivative curve of the test block 1
Test block number Critical hydrogen evolution potential / V Critical currentmA Critical current densityAm-2
1 -1.05 3.16 0.559
2 -1.04 2.25 0.398
3 -1.12 3.13 0.554
Table 1  Critical hydrogen evolution potential and critical current density of three test blocks
Fig.8  Changes of cathodic polarization potential withtime under different current conditions
Applied current density / Am-2 Steady-state cathodic polarization potential / V Applied current density / Am-2 Steady-state cathodic polarization potential / V
0.177 -0.968 0.619 -1.110
0.265 -1.003 0.707 -1.133
0.354 -1.031 0.796 -1.155
0.442 -1.058 0.884 -1.176
0.530 -1.084 --- ---
Table 2  Corresponding steady state potential under each applied current density
Fig.9  Relation curves of the polarization current density and the cathodic polarization potential
Test blocknumber Critical hydrogen evolution potential / V Steady-state critical current densityAm-2
1 -1.05 0.430
2 -1.04 0.280
3 -1.12 0.354
Table 3  Critical current density for hydrogen evolution of each test block under steady state
[1] Jin W L. Zhao Y X.Durability of Concrete Structure [M]. Beijing: Science Press, 2014(金伟良, 赵羽习. 混凝土结构耐久性 [M]. 北京: 科学出版社, 2014)
[2] Jin W L.Corroded Concrete Structures [M]. Beijing: Science Press, 2011(金伟良. 腐蚀混凝土结构学 [M]. 北京: 科学出版社, 2011)
[3] Jin W L, Chen J Y, Mao J H, et al.The effect of electrochemical rehabilitation on service performance of reinforced concrete structures[J]. Eng. Mech., 2016, 33(2): 1(金伟良, 陈佳芸, 毛江鸿等. 电化学修复对钢筋混凝土结构服役性能的作用效应[J]. 工程力学, 2016, 33(2): 1)
[4] Schneck U.Investigations on the chloride transformation during the electrochemical chloride extraction process[J]. Mater. Corros., 2000,51: 91
[5] Sun W B, Gao X J, Yang Y Z, et al.Microstructure of concrete after electrochemical chloride extraction treatment[J]. J. Harbin Eng. Univ., 2009, 30: 1108(孙文博, 高小建, 杨英姿等. 电化学除氯处理后的混凝土微观结构研究[J]. 哈尔滨工程大学学报, 2009, 30: 1108)
[6] Ministry of communications and transportation of the People's Republic of China. JTS 153-2-2012 Technical specification for electrochemical corrosion protection of reinforced concrete structures in harbour engineering [S]. Beijing: People Communications Press, 2012(中华人民共和国交通运输部. JTS 153-2-2012 海港工程钢筋混凝土结构电化学防腐蚀技术规范 [S]. 北京: 人民交通出版社, 2012)
[7] Zheng L, Wei J X, Yu Q J, et al.Electrode reaction during electrochemical chloride extraction of reinforced concrete[J]. J. Chin. Ceram. Soc., 2009, 37: 1190(郑靓, 韦江雄, 余其俊等. 电化学除盐过程中钢筋表面发生的电极反应[J]. 硅酸盐学报, 2009, 37: 1190)
[8] Yang Z Y.Studying the effect of cathodic polarization on the susceptibility of 907 steel to hydrogen embrittlement [D]. Qingdao: Ocean University of China, 2009(杨兆艳. 阴极极化对海水中907钢氢脆敏感性影响研究 [D]. 青岛: 中国海洋大学, 2009)
[9] Zhao D P.Study on hydrogen permeation and hydrogen embrittlement of x80 pipeline steel and its haz caused by cathodic protection [D]. Qingdao: China University of Petroleum (East China), 2014(赵大朋. 阴极保护下X80钢及焊接影响区的氢渗透行为和氢脆敏感性研究 [D]. 青岛: 中国石油大学 (华东), 2014)
[10] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008(曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008)
[11] Bennet J, Schue T J.Electrochemical chloride removal and protection of concrete bridge components: Laboratory studies strategic highway research program [R]. Washington: National Research Council, 1993
[12] García J, Almeraya F, Barrios C, et al.Effect of cathodic protection on steel-concrete bond strength using ion migration measurements[J]. Cem. Concr. Compos., 2012, 34: 242
[13] Wei J X, Wang X X, Zheng L, et al.Research on the hydrogen evolution reaction and its effect on the bond strength between reinforcement and concrete during electrochemical chloride extraction[J]. J. Wuhan Univ. Technol., 2009, 31(12): 30(韦江雄, 王新祥, 郑靓等. 电除盐中析氢反应对钢筋-混凝土粘结力的影响[J]. 武汉理工大学学报, 2009, 31(12): 30)
[14] General Administration of quality supervision, inspection and Quarantine of the People's Republic of China, China National Standardization Administration. GB/T 24196-2009 Corrosion of metals and alloys-Electrochemical test methods-Guidelines for conducting potentiostatic and potentiodynamic polarization measurements [S]. Beijing: Standards Press of China, 2010(中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 24196-2009 金属和合金的腐蚀电化学试验方法恒电位和动电位极化测量导则 [S]. 北京: 中国标准出版社, 2010)
[15] Liu W J.Investigation of microstructure and corrosion behavior of Mg-Al series magnesium alloy with/without rare earth element (Ce, La) addition [D]. Hangzhou: Zhejiang University, 2012(刘文娟. Mg-Al系镁合金及稀土元素 (Ce, La) 合金化后微观结构和腐蚀行为的研究 [D]. 杭州: 浙江大学, 2012)
[1] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[7] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[8] ZHANG Timing, ZHAO Weimin, GUO Wang, WANG Yong. Susceptibility to Hydrogen Embrittlement of X65 Steel Under Cathodic Protection in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[9] HAO Wenkui,LIU Zhiyong,ZHANG Xin,DU Cuiwei,LI Xiaogang,LIU Xiang. Effect of H2S Concentration on Stress Corrosion Cracking Behavior of 35CrMo Steel in An Artificial Solution Simulated Drilling Well Waters at Oil Field[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[10] LI Chengjie,DU Min. Research and Development of Cathodic Protection for Steels in Deep Seawater[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[11] JIN Weiliang,GUO Zhu,XU Chen. Polarization Analysis of Reinforced after Electrochemical Repair[J]. 中国腐蚀与防护学报, 2013, 33(1): 75-80.
[12] DONG Xiqing, HUANG Yanliang. RESEARCH PROGRESS FOR STRESS CORROSION CRACKING OF STAINLESS STEEL UNDER MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
[13] LIN Zhaoqiang, MA Li, YAN Yonggui. EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF WELDING LINE IN HIGH STRENGTH HULL STRUCTURAL STEEL[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[14] ZHANG Yu, SONG Renguo, TANG Puhong. HYDROGEN EMBRITTLEMENT SUSCEPTIBILITY AND Mg-H INTERACTION IN 7075 ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2010, 30(5): 364-368.
[15] ZHENG Chuanbo HUANGYanliang HUO Chunyong YU Qing ZHU Yongyan. STRESS CORROSION CRACKING OF X56 GRADE PIPELINE STEEL IN ATMOSPHERIC ENVIRONMENT CONTAINING H2S[J]. 中国腐蚀与防护学报, 2009, 29(1): 19-23.
No Suggested Reading articles found!