Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (4): 305-314    DOI: 10.11902/1005.4537.2016.080
Orginal Article Current Issue | Archive | Adv Search |
Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate
Jie KOU1,2(), Xince ZHANG2, Gan CUI2, Baoan YANG3
1 Shandong Provincial Key Laboratory of Oil & Gas Storage and Transportation Safety, Qingdao Key Laboratory of Circle Sea Oil & Gas Storage and Transportation Technology, China Univeristy of Petroleum, Qingdao 266580, China
2 College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
3 China Petroleum and Chemical Corporation, Yulin to Jinan Gas Pipeline Subsidiary, Jinan 250000, China
Download:  HTML  PDF(2963KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cathodic protection is an important method to prevent the corrosion of tank bottom plate. In this article,the research status in recent decades about the current density- and potential-distribution of tank bottom plate under cathodic protection is summarized. The research status and the relevant issues related with the analytical method and numerical analysis method applied for the status of cathodic protection of tank bottom plates are described and discussed. The authors prospect that the analytical method will be gradually replaced by numerical method, while the mathematical model and boundary conditions need to be further studied and improved. In addition,the combined use of a variety of numerical methods will be a trend in the development of numerical simulation in the future.

Key words:  tank bottom plate      analytical method      numerical method      boundary condition      combined use      cathodic protection     
Received:  20 June 2016     
ZTFLH:  TG174.41  
About author: 

These authors contributed equally to this work.

Cite this article: 

Jie KOU, Xince ZHANG, Gan CUI, Baoan YANG. Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 305-314.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.080     OR     https://www.jcscp.org/EN/Y2017/V37/I4/305

Fig.1  Comparison of measured potential value with calculated potential value[9]
Fig.2  Potential distribution at the tank bottom[10]
Fig.3  Reduced sketch map of the one-side deep-well anode with cathodic protection system[12]
Fig.4  Mesh lattice (a) and typical element (b) used for calculating potential distribution on cathodically protected external tank bottom[22]
Fig.5  2D geometry for FEM analysis[28]
Fig.6  3D geometry for FEM analysis[28]
Test point E (Measured)mV E(Numerical)mV Relative%
A -994 -984 -1.0
B -973 -980 0.7
C -956 -969 1.4
D -940 -947 0.7
E -912 -950 4.0
F -903 -945 4.4
G -893 -965 8.1
H -924 -975 5.5
Table 1  Comparisons of the results of potential distribution (SCE)
Fig.7  Schematic diagram of tank bottom plate grid[1]
Fig.8  Schematic diagram of 2D sacrificial anode CP system[37]
Fig.9  Comparison of BEM calculations and experimental results of potential distribution[37]
Fig.10  Schematic diagram of experimental system[42]
Fig.11  Measuring points on the steel disc[42]
Fig.12  Comparison of simulated data and measured data[42]
[1] Douglas P R, Mark E O.A mathematical model for the cathodic protection of tank bottoms[J]. Corros. Sci., 2005, 47: 849
[2] Levich V G.The theory of concentration polarization[J]. Acta physicochim. URSS, 1942, 17: 257
[3] Morgan J H.Cathodic Protection[M]. London: Leonard Hill, 1949
[4] Smyrl W H, Newman J.Detection of nonuniform current distribution on a disk electrode[J]. J. Electrochem. Soc., 1972, 199: 208
[5] Newman J, Thomas-Alyea K E. Electrochemical Engineering[M]. New Jersey: Prentice-Hall, 1991
[6] Newman J.Cathodic protection of a plane with parallel cylindrical anodes[J]. J. Electrochem. Soc., 1997, 144: 450
[7] Li X Z, Newman J.Cathodic protection for disks of various diameters[J]. J. Electrochem. Soc., 2001, 148B: 157
[8] Weng Y J, Li X Y.Judgment of cathodic protection effectiveness on tank bottom by potential distribution modeling[J]. Oil Gas Storage Transport., 1998, 17(1): 35(翁永基, 李相怡. 用电位分布数学模型评价罐底阴极保护效果[J]. 油气储运, 1998, 17(1) : 35)
[9] Li X Y, Weng Y J.Calculating potential distribution on exterior of tank bottoms by analytical algorithm[J]. Acta Petrol. Sin., 1998, 19(3): 98(李相怡, 翁永基. 金属储罐底板外侧阴极保护电位分布的解析计算法[J]. 石油学报, 1998, 19(3): 98)
[10] Liang H, Liu S M, Xiao R G.Analysis on distribution inhomogeneity of cathodic protection potential for bottom plate of oil tank[J]. Oil Gas Storage Transport., 2004, 23(4): 39(梁宏, 刘书梅, 肖容鸽. 储罐底板阴极保护电位分布不均匀性分析[J]. 油气储运, 2004, 23(4): 39)
[11] Geng X M.Underground electric field calculation for regional cathodic protection of oil-station [D]. Qingdao: China University of Petroleum, 2003(耿小梅. 区域性阴极保护地下电场计算及阳极位置优化 [D]. 青岛: 中国石油大学, 2003)
[12] Du Y X, Zhang G Z, Liu G.Potential distributions on external tank bottom under cathodic protection of deep well anode[J]. J. Electrochem., 2006, 12: 55(杜艳霞, 张国忠, 刘刚. 罐底外侧深井阳极阴极保护电位分布规律研究[J]. 电化学, 2006, 12: 55)
[13] Wang D, Liao K X, Li Y X, et al.Potential distribution at the steel tank bottom in Yaha loading south station[J]. Corros. Prot., 2014, 35: 1270(王东, 廖柯熹, 李月霄等. 牙哈装车南站钢质储罐底板的电位分布[J]. 腐蚀与防护, 2014, 35: 1270)
[14] Zhou L.A simulated experimental investigation on the cathodic protection potential distribution of external tank botton [D]. Qingdao: China University of Petroleum, 2008(周磊. 罐底外侧阴极保护电位分布模拟试验研究 [D]. 青岛: 中国石油大学, 2008)
[15] Kranc S C, Sagüés A A.Detailed modeling of corrosion macrocells on steel reinforcing in concrete[J]. Corros. Sci., 2001, 43: 1355
[16] Adey R A, Niku S M.Computer modelling of galvanic corrosion[J]. ASTM Spec. Tech. Publ., 1988, 978: 96
[17] Allahar K N, Orazem M E.On the extension of CP models to address cathodic protection under a delaminated coating[J]. Corros. Sci., 2009, 51: 962
[18] Verbrugge M.Galvanic corrosion over a semi-infinite planar surface[J]. Corros. Sci., 2006, 48: 3489
[19] DeGiorgi V G, Thomas III E D, Lucas K E. Scale effects and verification of modeling of ship cathodic protection systems[J]. Eng. Analy. Bound. Elem., 1998, 22: 41
[20] DeGiorgi V G, Wimmer S A. Geometric details and modeling accuracy requirements for shipboard impressed current cathodic protection system modeling[J]. Eng. Anal. Bound. Elem., 2005, 29: 15
[21] Bia[lstrok]ecki R A, Ostrowski Z, Kassab A J, et al. Coupling BEM, FEM and analytic solutions in steady-state potential problems[J]. Eng. Anal. Bound. Elem., 2002, 26: 597
[22] Qiu F, Xu N X.Potential distribution on cathodically protected external tank bottom[J]. J. Chin. Soc. Corros. Prot., 1996, 16(1): 29(邱枫, 徐乃欣. 钢质贮罐底板外侧阴极保护时的电位分布[J]. 中国腐蚀与防护学报, 1996, 16(1): 29)
[23] Ma W P, Zhang G Z, Liang C H, et al.Numerical modeling of deepwell anode to cathodic protection of bottom plate of tank[J]. Oil Gas Storage Transport., 2004, 23(9): 31(马伟平, 张国忠, 梁昌华等. 深井阳极对储罐底板阴极保护的数值模拟[J]. 油气储运, 2004, 23(9): 31)
[24] De Lacerda L A, Da Silva J M, Lázaris J. Dual boundary element formulation for half-space cathodic protection analysis[J]. Eng. Anal. Bound. Elem., 2007, 31: 559
[25] Du Y X.An investigation of the cathodic protection potential distribution on the exterior of steel tank bottom [D]. Qingdao: China University of Petroleum, 2007(杜艳霞. 金属储罐底板外侧阴极保护电位分布规律研究 [D]. 青岛: 中国石油大学, 2007)
[26] Ma W P, Zhang G Z, Bai C C, et al.The research evolvement on regional cathodic protection technique[J]. Oil Gas Storage Transport., 2005, 24(9): 38(马伟平, 张国忠, 白宗成等. 区域性阴极保护技术研究进展[J]. 油气储运, 2005, 24(9): 38)
[27] Hao H N, Li Z L, Wang T Y, et al.Determination of boundary conditions for numerical simulation of cathodic protection[J]. Oil Gas Storage Transport., 2011, 30: 504(郝宏娜, 李自力, 王太源等. 阴极保护数值模拟计算边界条件的确定[J]. 油气储运, 2011, 30: 504)
[28] Bazzoni B, Lorenzi S, Marcassoli P, et al.Current and potential distribution modeling for cathodic protection of tank bottoms[J]. Corrosion, 2011, 67: 026001
[29] Zhou B, Han W L, Zhang Y Y.Application of modern cathodic protection techniques in oil industry[J]. Corros. Prot., 2012, 33(S2): 30(周冰, 韩文礼, 张盈盈. 储罐内底板牺牲阳极阴极保护电流分布的有限元模拟[J]. 腐蚀与防护, 2012, 33(S2): 30)
[30] Dong L W, Liao K X, Dong B.Selection of soil resistivity in numerical calculation of cathodic protection[J]. Mater. Prot., 2015, 48(10): 16(董龙伟, 廖柯熹, 董斌. 阴极保护数值计算中土壤电阻率的选取[J]. 材料保护, 2015, 48(10): 16)
[31] Fu J W, Chow J S K. Cathodic protection designs using an integral equation numerical method[J]. Mater. Perform., 1982, 21(10): 9
[32] Weng Y J.The research and application of mathematical modeling in cathodic protection design techniques[J]. Corros. Sci. Prot. Technol., 1999, 11: 36(翁永基. 阴极保护设计中的模型研究及其应用[J]. 腐蚀科学与防护技术, 1999, 11: 36)
[33] Miyasaka M, Hashimoto K, Kishimoto K, et al.A boundary element analyses on galvanic corrosion problems-computational accuracy on galvanic fields with screen plates[J]. Corros. Sci., 1990, 30: 299
[34] Jia J X, Song G, Atrens A, et al.Evaluation of the BEASY program using linear and piecewise linear approaches for the boundary conditions[J]. Mater. Corros., 2004, 55: 845
[35] Xia Z C.Calculation on the cathodic protection potential distribution of the ground steel tank bottom [D]. Dalian: Dalian University of Technology, 2000(夏宗春. 地面钢质贮罐底板外侧阴极保护电位分布计算 [D]. 大连: 大连理工大学, 2000)
[36] Robert A, John B.Computer Simulation as an aid to CP System Design and Interference Prediction [A]. Proceedings of the CEOCOR 2000 Conference[C]. Brussels, Belgium, 2000
[37] Abootalebi O, Kermanpur A, Shishesaz M R, et al.Optimizing the electrode position in sacrificial anode cathodic protection systems using boundary element method[J]. Corros. Sci., 2010, 52: 678
[38] Zhang F, Chen H Y, Li G D, et al.The application of numerical simulation in cathodic protection of pipelines and stations[J]. Oil Gas Storage Transport., 2011, 30: 208(张丰, 陈洪源, 李国栋等. 数值模拟在管道和站场阴极保护中的应用[J]. 油气储运, 2011, 30: 208)
[39] Qi J T, Li Y.Numerical simulation of cathodic protection field for the wa-ter phase area in naphtha storage tank[J]. Mar. Sci., 2012, 36(11): 79(齐建涛, 李焰. 海运石脑油储罐水相区阴极保护电场的数值模拟[J]. 海洋科学, 2012, 36(11): 79)
[40] Sun H.Numerical simulation and construction of the cathodic protection effect on the tank inside bottom plate[J]. Corros. Prot., 2013, 34: 937(孙洪. 储罐内底板阴极保护效果的数值模拟及施工[J]. 腐蚀与防护, 2013, 34: 937)
[41] Wang D.Study on cathodic protection potential distribution of tank bottom plate at Yaha loading station [D]. Chengdu: Southwest Petroleum University, 2015(王东. 牙哈装车南站储罐底板阴极保护电位分布研究 [D]. 成都: 西南石油大学, 2015)
[42] Du Y X, Lu M X, Shao S B, et al.Investigation of the cathodic protection potential distribution on the exterior of steel tank bottom [A]. Corrosion 2011[C]. Houston, Texas: NACE International, 2011
[43] Du Y X, Zhang G Z, Li J.Numerical calculation of cathodic protection potential distribution[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 53(杜艳霞, 张国忠, 李健. 阴极保护电位分布的数值计算[J]. 中国腐蚀与防护学报, 2008, 28: 53)
[44] Brichau F, Deconinck J.A numerical model for cathodic protection of buried pipes[J]. Corrosion, 1994, 50: 39
[45] Zhou B, Han W L, Zhang Y Y.Applications of modern cathodic protection techniques in oil industry[J]. Corros. Prot., 2012, 33(S2): 30(周冰, 韩文礼, 张盈盈. 储罐内底板牺牲阳极阴极保护电流分布的有限元模拟[J]. 腐蚀与防护, 2012, 33(S2): 30)
[46] Zhang N.Numerical simulation of the regional cathodic protection of the pipeline in the station [D]. Qingdao: China University of Petroleum, 2012(张娜. 站场管道区域性阴极保护数值模拟 [D]. 青岛: 中国石油大学, 2012)
[47] Cui G, Li Z L, Zhao L Y, et al.Local cathodic protection design based on numerical simulation[J]. Anti-Corros. Method. Mater., 2015, 62: 407
[48] Cui G, Li Z L, Yang C, et al.Study on the interference corrosion of cathodic protection system[J]. Corros. Rev., 2015, 33: 233
[49] Cui G, Li Z L, Yang C, et al.The influence of DC stray current on pipeline corrosion[J]. Petrol. Sci., 2016, 13: 135
[50] Du Y X, Zhang G Z.Numerical modeling of cathodic protection potential distribution on the exterior of tank bottom[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 346(杜艳霞, 张国忠. 储罐底板外侧阴极保护电位分布的数值模拟[J]. 中国腐蚀与防护学报, 2006, 26: 346)
[51] Liao K X, Dong L W, Zhang H X.Prediction model and precision of cathodic protection potential distribution on the outer bottom surface of metal tank[J]. Mater. Prot., 2015, 48(8): 1(廖柯熹, 董龙伟, 张淮鑫. 金属储罐外底面阴极保护电位分布的预测模型及其精准性[J]. 材料保护, 2015, 48(8) : 1)
[52] Vittonato J, Baynham J.General Consideration about Current Distribution and Potential Attenuation Based on Storage Tank Bottom Modeling Study [A]. Corrosion 2012[C]. Salt Lake City, Utah: NACE International, 2012
[1] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[3] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[4] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[5] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[6] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[7] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[8] Shuang YANG,Nan TANG,Maocheng YAN,Kangwen ZHAO,Cheng SUN,Jin XU,Changkun YU. Effect of Temperature on Corrosion Behavior of X80 Pipeline Steel in Acidic Soil[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[9] XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[10] FAN Fengqin, SONG Jiwen, LI Chengjie, DU Min. Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[11] QIU Jing, DU Min, LU Yuan, ZHANG Ying, GUO Haijun, LI Chengjie. Cathodic Protection of X65 Carbon Steel in a Simulated Oilfield Produced Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 333-338.
[12] LIN Yonghua,ZHANG Xuefeng,HAN Li,ZHANG Lanhe. Comparison of Corrosion Protection Measures of Grounding Grids for Electric Power Station[J]. 中国腐蚀与防护学报, 2013, 33(6): 501-506.
[13] ZHU Junmou,YAO Zhengjun,JIANG Qiong,WEI Dongbo,YIN Guoxian,
LUO Xixi,ZHOU Wenbin. Microstructure and Corrosion Resistance of Cr-free Nanocomposite Zn/Al Coatings[J]. 中国腐蚀与防护学报, 2013, 33(5): 425-429.
[14] WEN Lijuan,GAO Zhiming,LIU Yangyang,LIN Feng. Effects of Applied Cathodic Potential on Susceptibility to Hydrogen Embrittlement and Mechanical Properties of Q235 Steel[J]. 中国腐蚀与防护学报, 2013, 33(4): 271-276.
[15] WU Zhibin,WEI Yinghua,LI Jing,SUN Chao. Cathodic Polarization Level of Q345 Steel beneath Simulated Disbonded Coating in Agitated Solution[J]. 中国腐蚀与防护学报, 2013, 33(2): 104-108.
No Suggested Reading articles found!